Tomographic dimensions for the installation of rapid maxillary expansion mini-implants in different age groups

  • Alina K. Cardozo-Muñoz Escuela de Odontología, Universidad Católica Santo Torivio de Mogrovejo, Chiclayo, Perú.
  • Marcos J. Carruitero Escuela de Odontología, Universidad Católica Santo Torivio de Mogrovejo, Chiclayo, Perú.; Escuela de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo, Perú.


Objective: The purpose of the research was to com-pare the dimensions of the upper jaw between different age groups for the installation of mini-implants for rapid maxillary expansion.
Materials and Methods: The study was descriptive, retroprospective and observational. Cone beam computed tomography was used for the evaluation of 30 patients between 7 and 56 years of age, divided into three groups, ten up to 14 years, ten from 15 to 30 years, and ten from 31 years and older. The premolar and molar regions were selected for the measurement of the maxilla in the coronal plane, both bone and soft tissue. To compare the measurements, the Kruskal Wallis and Mann-Whitney U tests were used.
Results: No statistically significant differences were found between the groups. The thicknesses of the bone tissue decreased from the first premolar to the second molar from 9.48 +/-3.71 mm to 5.40 +/-2.80 mm respectively, while the soft tissue thicknesses were more homogeneous with measurements of 0.56 +/-0.74 mm to 2.76 +/- 2.42 mm.
Conclusions: The dimensions of the bone and soft tis-sue of the upper jaw, evaluated vertically for the installa-tion of mini-implants, were similar in all the age groups studied, with larger dimensions in men than in women at the premolar level. The dimensions of the maxilla for the palatal miniimplants were close to 9 mm in bone tissue and 3 mm of soft tissue at the level of premolars and 5 mm in hard tissue with 1 mm of soft tissue at the level of molars.
Keywords: Palatal expansion technique; Dental im-plants; Mini implants; Maxilla; Cone-beam computed to-mography; Age groups


1. Davoudi A, Amrolahi M, Khaki H. Effects of laser therapy on patients who underwent rapid maxi-llary expansion; a systematic review. Lasers Med Sci. 2018;33(6):1387-95.

2. Cannavale R, Chiodini P, Perillo L, Piancino MG. Rapid palatal expansion (RPE): Meta-analysis of long-term effects. Orthodox Craniofac Res. 2018;21(4):225-35.

3. Lyu CX, Yang L, Chen LL, Yu FY, Lu HP. [Advance and review: miniscrew-assisted rapid palatal expansion]. Zhonghua Kou Qiang Yi Xue Za Zhi. 2019;54(11):778-782. Chinese. doi: 10.3760/cma.j.issn.1002-0098.2019.11.011. PMID: 31683387.

4. Cunha ACD, Lee H, Nojima LI, Nojima MDCG, Lee KJ. Miniscrew-assisted rapid palatal expansion for managing arch perimeter in an adult patient. Dental Press J Orthod. 2017;22(3):97-108. doi: 10.1590/2177-6709.22.3.097-108.oar. PMID: 2874 6493; PMCID: PMC5525451.

5. Brunetto DP, Sant'Anna EF, Machado AW, Moon W. Non-surgical treatment of transverse deficiency in adults using Microimplant-assisted Rapid Pa-latal Expansion (MARPE). Dental Press J Orthod. 2017;22(1):110-125. doi: 10.1590/2177-6709.22.1.110-125.sar. PMID: 28444019; PMCID: PMC5398849.

6. de la Iglesia G, Walter A, de la Iglesia F, Winsauer H, Puigdollers A. Stability of the anterior arm of three different Hyrax hybrid expanders: an in vitro study. Dental Press J Orthod. 2018;23(1):37-45. doi: 10.1590/2177-6709.23.1.037-045.oar. PMID: 29791684; PMCID: PMC5962246.

7. Ghoneima A, Abdel-Fattah E, Hartsfield J, El-Bedwehi A, Kamel A, Kula K. Effects of rapid maxillary expansion on the cranial and circummaxillary sutures. Am J Orthod Dentofacial Orthop. 2011; 140(4):510-9. doi: 10.1016/j.ajodo.2010.10.024. PMID: 21967938; PMCID: PMC5161454.

8. Rojas V, Macherone C, Zursiedel MI, Valenzuela JG. Rapid maxilary expansion in young adults: comparison of tooth-borne and bone-borne appli-ances, a cohort st udy. J Oral Res 2019; 8(3):201-209. doi: 10.17126/joralres.2019.031

9. Chang CJ, Lin WC, Chen MY, Chang HC. Evaluation of total bone and cortical bone thickness of the palate for temporary anchorage device insertion. J Dent Sci. 2021;16(2):636-642. doi: 10.1016/j.jds.2020. 09.016. Epub 2020 Oct 21. PMID: 33854713; PMCID: PMC8025190.

10. Negishi S, Richards LC, Hughes T, Kondo S, Kasai K. Genetic contribution to palatal morphology variation using three-dimensional analysis in Australian twins. Arch Oral Biol. 2020;115:104740. doi: 10.1016/j.archoralbio.2020.104740. Epub 2020 May 5. PMID: 32417704.

11. Eslami Amirabadi G, Golshah A, Derakhshan S, Khandan S, Saeidipour M, Nikkerdar N. Palatal dimensions at different stages of dentition in 5 to 18-year-old Iranian children and adolescent with normal occlusion. BMC Oral Health. 2018 15;18(1):87. doi: 10.1186/s12903-018-0538-y. PMID: 29764428; PMCID: PMC5952467.

12. Cantarella D, Dominguez-Mompell R, Moschik C, Mallya SM, Pan HC, Alkahtani MR, Elkenawy I, Moon W. Midfacial changes in the coronal plane induced by microimplant-supported skeletal expander, studied with cone-beam computed tomography images. Am J Orthod Dentofacial Orthop. 2018;154(3):337-345. doi: 10.1016/j.ajodo.2017.11.033. PMID: 30173836.

13. Angelieri F, Cevidanes LH, Franchi L, Gonçalves JR, Benavides E, McNamara JA Jr. Midpalatal suture maturation: classification method for individual assessment before rapid maxillary expansion. Am J Orthod Dentofacial Orthop. 2013;144(5):759-69. doi: 10.1016/j.ajodo.2013.04.022. PMID: 24182592; PMCID: PMC4185298.

14. Berwig LC, Marquezan M, Milanesi JM, Montenegro MM, Ardenghi TM, Toniolo da Silva AM. Do gender and age influence hard palate dimensions? A systematic review. Codas. 2018;30(5):e20170216. Portuguese, English. doi: 10.1590/2317-1782/20182017 216. PMID: 30379195.

15. Lyu X, Guo J, Chen L, Gao Y, Liu L, Pu L, Lai W, Long H. Assessment of available sites for palatal ortho-dontic mini-implants through cone-beam compu-ted tomography. Angle Orthod. 2020;90(4):516-523. doi: 10.2319/070719-457.1. PMID: 33378492; PMCID: PMC8028458.

16. Mallick S, Murali PS, Kuttappa MN, Shetty P, Nair A. Optimal sites for mini-implant insertion in the lingual or palatal alveolar cortical bone as assessed by cone beam computed tomography in South Indian population. Orthod Craniofac Res. 2021;24(1):121-129. doi: 10.1111/ocr.12415. Epub 2020 Aug 20. PMID: 32749047.

17. Caetano GR, Soares MQ, Oliveira LB, Junqueira JL, Nascimento MC. Two-dimensional radiographs versus cone-beam computed tomography in planning mini-implant placement: A systematic review. J Clin Exp Dent. 2022;14(8):e669-e677. doi: 10.4317/jced.59384. PMID: 36046172; PMCID: PMC9422966.

18. Cantarella D, Dominguez-Mompell R, Moschik C, Sfogliano L, Elkenawy I, Pan HC, Mallya SM, Moon W. Zygomaticomaxillary modifications in the horizontal plane induced by micro-implant-supported skeletal expander, analyzed with CBCT images. Prog Orthod. 2018;19(1):41. doi: 10.1186/s40510-018-0240-2. PMID: 30345476; PMCID: PMC61 96147.
How to Cite
CARDOZO-MUÑOZ, Alina K.; CARRUITERO, Marcos J.. Tomographic dimensions for the installation of rapid maxillary expansion mini-implants in different age groups. Journal of Oral Research, [S.l.], v. 12, n. 1, p. 288-298, dec. 2023. ISSN 0719-2479. Available at: <>. Date accessed: 23 apr. 2024. doi: