Effects of 970 nm diode laser irradiation on morphology, proliferation, and differentiation of gingival mesenchymal stem cells

Abstract

Objective: The objective of this study was to investigate the morphology, proliferation, and differentiation of gingival mesenchymal stem cells (GMSCs) irradiated with a 970 nm Diode Laser (LLLT). It is essential to validate the efficacy of treatment, optimize irradiation conditions and guarantee the safety and quality of stem cells for future use in dental applications.
Materials and Methods: GMSCs were cultured in standard conditions and irradiated with a Diode laser (970 nm, 0.5W) with an energy density of 9J/cm2. Cell proliferation was assessed with the WST-1 proliferation kit. GMSCs were differentiated into chondrogenic and osteogenic lineages. Cell morphology was performed with Hematoxylin/eosin staining, and quantitative nuclear analysis was done. Cell viability was monitored with trypan blue testing.
Results: GMSCs subjected to irradiation demonstrated a significant increase in proliferation at 72 hours compared to the non-irradiated controls (p=0.027). This indicates that the 970 nm diode laser has a stimulatory effect on the proliferation of GMSCs. LLLT-stimulated GMSCs exhibited the ability to differentiate into chondrogenic and osteogenic lineages. A substantial decrease in cell viability was observed 24 hours after irradiation (p=0.024). However, after 48 hours, the cell viability recovered without any significant differences. This indicates that there might be a temporary negative impact on cell viability immediately following irradiation, but the cells were able to recover and regain their viability over time.
Conclusions: This study support that irradiation with a 970 nm diode laser could stimulate the proliferation of GMSCs, maintain their ability to differentiate into chondrogenic and osteogenic lineages, and has minimal impact on the mor- phological characteristics of the cells. These results support the potential use of NIR Lasers in combination with GMSCs as a promising strategy for dental treatments.
Keywords: Photobiomodulation; semiconductor lasers; Mesenchymal stem cells; Gingiva; Cell Proliferation; Safety.

References

[1]. Jovic D, Yu Y, Wang D, Wang K, Li H, Xu F, Liu C, Liu J, Luo Y. A Brief Overview of Global Trends in MSC-Based Cell Therapy. Stem Cell Rev Rep. 2022;18(5):1525-1545. https://doi.org/10.1007/s12015-022-10369-1. Epub 20 22 Mar 28. PMID: 35344199; PMCID: PMC8958818.

[2]. Zhou LL, Liu W, Wu YM, Sun WL, Dörfer CE, Fawzy El-Sayed KM. Oral Mesenchymal Stem/Progenitor Cells: The Immunomodulatory Masters. Stem Cells Int. 2020;2020:1327405. https://doi.org/10.1155/2020/1327405. PMID: 32184830; PM CID: PMC7060886.

[3]. Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, et al. Mesenchymal Stem Cells Derived from Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis. J Immunol Baltim Md 1950. 2009;183(12):7787–7798.

[4]. Angelopoulos I, Brizuela C, Khoury M. Gingival Mesenchymal Stem Cells Outperform Haploidentical Dental Pulp-derived Mesenchymal Stem Cells in Proliferation Rate, Migration Ability, and Angiogenic Potential. Cell Transplant. 2018;27(6):967–78.

[5]. Mosca RC, Ong AA, Albasha O, Bass K, Arany P. Photobiomodulation Therapy for Wound Care: A Potent, Noninvasive, Photoceutical Approach. Adv Skin Wound Care. 2019;32(4):157–67.

[6]. Karu TI. Cellular and Molecular Mechanisms of Photobiomodulation (Low-Power Laser Therapy). IEEE J Sel Top Quantum Electron. 2014;20(2):143–8.

[7]. AlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci. 2012;27(1):237-49. https://doi.org/10.1007/s10103-0 11-0885-2. Epub 2011 Jan 28. PMID: 21274733.

[8]. Bakshi PV, Setty SB, Kulkarni MR. Photobiomodulation of human gingival fibroblasts with diode laser - A systematic review. J Indian Soc Periodontol. 2022;26(1):5-12. https://doi.org/10.4103/jisp.jisp_90_ 21. PMID: 35136310; PMCID: PMC8796789.

[9]. Khorsandi K, Hosseinzadeh R, Abrahamse H, Fekrazad R. Biological Responses of Stem Cells to Photobiomodulation Therapy. Curr Stem Cell Res Ther. 2020;15(5):400-413. doi: 10.2174/1574888X15666200204123722. PMID: 32013851..

[10]. Dompe C, Moncrieff L, Matys J, Grzech-Leśniak K, Kocherova I, Bryja A, Bruska M, Dominiak M, Mozdziak P, Skiba THI, Shibli JA, Angelova Volponi A, Kempisty B, Dyszkiewicz-Konwińska M. Photobiomodulation-Underlying Mechanism and Clinical Applications. J Clin Med. 2020;9(6):1724. doi: 10.3390/jcm9061724. PMID: 32503238; PMCID: PMC7356229.

[11]. Pinto H, Goñi Oliver P, Sánchez-Vizcaíno Mengual E. The Effect of Photobiomodulation on Human Mesenchymal Cells: A Literature Review. Aesthetic Plast Surg. 2021 Aug;45(4):1826-1842. doi: 10.1007/s00266-021-02173-y. Epub 2021 Feb 22. PMID: 33616715.

[12]. Santana-Blank L, Rodríguez-Santana E, Santana-Rodriguez K, Santana-Rodríguez J, Reyes H. Water’s Many Roles in Laser Photobiomodulation. 2015;3:1-5.

[13]. Zhao P, Song X, Nie L, Wang Q, Zhang P, Ding Y, Wang Q. Efficacy of adjunctive photodynamic therapy and lasers in the non-surgical periodontal treatment: A Bayesian network meta-analysis. Photodiagnosis Photodyn Ther. 2020;32:101969. doi: 10.1016/j.pdpdt.2020.101969.

[14]. Sadony DM, Montasser K. Evaluation and comparison between the bactericidal effect of diode laser irradiation (970 nm) and silver nanoparticles on Enterococcus faecalis bacterial strain (an in vitro study). Bull Natl Res Cent. 2019;43(1):155. https://doi.org/10.1186/s42269-019-0188-54

[15]. Hsu LF, Tsai MH, Shih AH, Chen YC, Chang BE, Chen YJ, Yao CJ. 970 nm low-level laser affects bone metabolism in orthodontic tooth movement. J Photochem Photobiol B. 2018;186:41-50. https://doi.org/10.1016/j.jphotobiol.2018.05.011. Epub 2018 Jul 10. PMID: 30005205.

[16]. Mirzaei A, Saberi-Demneh A, Gutknecht N, Ramezani G. The effect of low-level laser radiation on improving inferior alveolar nerve damage after sagittal split osteotomy: a systematic review. Lasers Med Sci. 2019;34(5):865-872. doi: 10.1007/s10103-019-027 18-3. Epub 2019 Jan 19. PMID: 30661183.

[17]. Ayar Z, Gholami B, Piri SM, Kaveh M, Baigi V, Ghodsi Z, Hassannejad Z, Rahimi-Movaghar V. The effect of low-level laser therapy on pathophysiology and locomotor recovery after traumatic spinal cord injuries: a systematic review and meta-analysis. Lasers Med Sci. 2022;37(1):61-75. doi: 10.1007/s10103-021-03301-5. Epub 2021 Mar 31. PMID: 33791887.

[18]. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7. doi: 10.1080/14653240600855905. PMID: 16923606.

[19]. Fuchs C, Schenk MS, Pham L, Cui L, Anderson RR, Tam J. Photobiomodulation Response From 660 nm is Different and More Durable Than That From 980 nm. Lasers Surg Med. 2021; 53(9):1279-1293. doi: 10.1002/lsm.23419. Epub 2021 May 16. PMID: 33998008.
20. Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR. Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim Biophys Acta Gen Subj. 2017;1861(2):441-449. doi: 10.1016/j.bbagen.2016.10.008. Epub 2016 Oct 15. PMID: 27751953; PMCID: PMC5195895.
21. Etemadi A, Sadatmansouri S, Sodeif F, Jalalishirazi F, Chiniforush N. Photobiomodulation Effect of Different Diode Wavelengths on the Proliferation of Human Gingival Fibroblast Cells. Photochem Photobiol. 2021;97(5):1123-1128. doi: 10.1111/php.13463. Epub 2021 Jun 23. PMID: 34107547.
22. Sterczała B, Grzech-Leśniak K, Michel O, Trzeciakowski W, Dominiak M, Jurczyszyn K. Assessment of Human Gingival Fibroblast Proliferation after Laser Stimulation In Vitro Using Different Laser Types and Wavelengths (1064, 980, 635, 450, and 405 nm)-Preliminary Report. J Pers Med. 2021;11(2):98. doi: 10.3390/jpm11020098. PMID: 33557038; PMCID: PMC7913795.
23. de Magalhães AC, Guimarães-Filho Z, Yoshimura EM, Lilge L. Photobiomodulation therapy can change actin filaments of 3T3 mouse fibroblast. Lasers Med Sci. 2020;35(3):585-597. doi: 10.1007/s10103-019-02852-y. Epub 2019 Aug 13. PMID: 31410615.
24. Chellini F, Tani A, Zecchi-Orlandini S, Giannelli M, Sassoli C. In Vitro Evidences of Different Fibroblast Morpho-Functional Responses to Red, Near-Infrared and Violet-Blue Photobiomodulation: Clues for Addressing Wound Healing. Applied Sciences. 2020; 10(21):7878. https://doi.org/10.3390/app10217878
[25]. McColloch A, Liebman C, Liu H, Cho M. Alterted Adipogenesis of Human Mesenchymal Stem Cells by Photobiomodulation Using 1064 nm Laser Light. Lasers Surg Med. 2021;53(2):263-274. doi: 10.1002/lsm.23278. Epub 2020 Jun 3. PMID: 32495397.

[26]. Sun Q, Nakata H, Yamamoto M, Kasugai S, Kuroda S. Comparison of gingiva-derived and bone marrow mesenchymal stem cells for osteogenesis. J Cell Mol Med. 2019;23(11):7592-7601. doi: 10.1111/jcmm.14632. Epub 2019 Sep 10. PMID: 31657140; PMCID: PMC6815943.

[27]. Agas D, Hanna R, Benedicenti S, De Angelis N, Sabbieti MG, Amaroli A. Photobiomodulation by Near-Infrared 980-nm Wavelengths Regulates Pre-Osteoblast Proliferation and Viability through the PI3K/Akt/Bcl-2 Pathway. Int J Mol Sci. 2021;22(14):7586. doi: 10.3390/ijms22147586. PMID: 34299204; PMCID: PMC8304212.

[28]. Thalaimalai DBR, Victor DJ, Prakash PSG, Subramaniam S, Cholan PK. Effect of Low-Level Laser Therapy and Platelet-Rich Fibrin on the Treatment of Intra-bony Defects. J Lasers Med Sci. 2020;11(4):456-463. doi: 10.34172/jlms.2020.71. Epub 2020 Oct 3. PMID: 33425297; PMCID: PMC7736943.

[29]. Ginani F, Soares DM, Barreto MP, Barboza CA. Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci. 2015;30(8):2189-94. doi: 10.1007/s10103-015-1730-9. Epub 2015 Mar 13. PMID: 25764448.

[30]. Jazaeri M, Torkzaban P, Afshar S, Najafi-Vosough R, Arany P, Gholami L. Comparison of Pulsed and Continuous Wave Diode Laser at 940 nm on the Viability and Migration of Gingival Fibroblasts. Photochem Photobiol. 2023;99(3):1003-1009. doi: 10.1111/php.13711. Epub 2022 Sep 29. PMID: 36086909.
Published
2023-09-06
How to Cite
ORTIZ, Javiera et al. Effects of 970 nm diode laser irradiation on morphology, proliferation, and differentiation of gingival mesenchymal stem cells. Journal of Oral Research, [S.l.], v. 12, n. 1, p. 86-99, sep. 2023. ISSN 0719-2479. Available at: <https://www.joralres.com/index.php/JOralRes/article/view/joralres.2023.008>. Date accessed: 19 may 2024. doi: https://doi.org/10.17126/joralres.2023.008.
Section
Articles