Concordance of the vestibular bone thickness at the level of point a between teleradiography and cone beam computed tomography

Abstract

Objective: The aim of this study was to determine the concordance of the vestibular bone thickness measured at the level of point A between Teleradiography and Cone Beam Computed Tomography (CBCT).
Materials and Methods: This study consisted of a cross-sectional analytical design of concordance that evaluated the teleradiographies and CBCTs of 32 patients. The measurements were performed by three evaluators, specialists in orthodontics. Two of them measured the CBCTs and one evaluated the teleradiographs. The concordance of both tests was determined using the Concordance Correlation Coefficient.
Results: When evaluating the value of the vestibular bone thickness at the level of point A between the CBCT and the teleradiography, it was observed that the mean value of the absolute difference between the two was 0.95±0.74, 95%CI [0.68–1.22], being statistically significant (p=0.0027). When the concordance between both tests was analyzed, it was observed that it was poor (CCC=0.204 95%CI [0.014–0.394]), although statistically significant (p<0.00001).
Conclusions: It was possible to conclude that there is no concordance in the measurement of the vestibular bone thickness at the level of Point A between the Teleradiography and the CBCT.
Keywords: Cone-beam computed tomography; Orthodontics; Cephalometry; Incisor; Patients; Cross-sectional studies

References

[1]. Sandoval P, García N, Sanhueza A, Romero A, Reveco R. Medidas cefalométricas en telerradiografías de perfil de pre-escolares de 5 años de la ciudad de Temuco. Int J Morphol. 2011;29(4):1235–40.

[2]. Downs WB. Variations in facial relationships; their significance in treatment and prognosis. Am J Orthod. 1948;34(10):812-40. https://doi.org/10.1016/0002-9416(48)90015-3. PMID: 18882558.

[3]. Andrews WA, Abdulrazzaq WS, Hunt JE, Mendes LM, Hallman LA. Incisor position and alveolar bone thickness. Angle Orthod. 2022;92(1):3-10. https://doi.org/10.2319/022320-122.1. PMID: 34383019; PMCID: PMC8691463.

[4]. Garib DG, Yatabe MS, Ozawa TO, da Silva Filho OG. Alveolar bone morphology under the perspective of the computed tomography: Defining the biological limits of tooth movement. Dental Press J Orthod. 2010;15(5):192–205.

[5]. Zhang X, Gao J, Sun W, Zhang H, Qin W, Jin Z. Evaluation of alveolar bone morphology of incisors with different sagittal skeletal facial types by cone beam computed tomography: A retrospective study. Heliyon. 2023;9(4):e15369. https://doi.org/10.1016/j.heliyon.2023.e15369. PMID: 37113777; PMCID: PMC10126934.

[6]. Picanço PR, Valarelli FP, Cançado RH, de Freitas KM, Picanço GV. Comparison of the changes of alveolar bone thickness in maxillary incisor area in extraction and non-extraction cases: computerized tomography evaluation. Dental Press J Orthod. 2013;18(5):91-8. https://doi.org/10.1590/s217694512 013000500016. PMID: 24352394.

[7]. Tong H, Enciso R, Van Elslande D, Major PW, Sameshima GT. A new method to measure mesiodistal angulation and faciolingual inclination of each whole tooth with volumetric cone-beam computed tomography images. Am J Orthod Dentofacial Orthop. 2012;142(1):133-43. https://doi.org/10.1016/j.ajodo.2011.12.027. PMID: 22 748999.

[8]. Wei D, Zhang L, Li W, Jia Y. Quantitative Comparison of Cephalogram and Cone-Beam Computed Tomography in the Evaluation of Alveolar Bone Thickness of Maxillary Incisors. Turk J Orthod. 2020;33(2):85-91. https://doi.org/10.5152/TurkJOrthod.2020.19097. PMID: 32637188; PMCID: PMC7316481.

[9]. Kula TJ 3rd, Ghoneima A, Eckert G, Parks ET, Utreja A, Kula K. Two-dimensional vs 3-dimensional comparison of alveolar bone over maxillary incisors with A-point as a reference. Am J Orthod Dentofacial Orthop. 2017;152(6):836-847.e2. https://doi.org/10.1016/j.ajo do.2017.05.030. PMID: 29173863.

[10]. Carmo De Menezes C, Janson G, Da C, Massaro S, Cambiaghi L, Garib DG. Reproducibility of bone plate thickness measurements with Cone-Beam Computed Tomography using different image acquisition protocols. Dental Press J Orthod. 2010;15(5):143–9.

[11]. García-Sanz V, Bellot-Arcis C, Montiel J, Paredes V, Gandia JL. Relación entre la posición de incisivos y el hueso alveolar. Rev Esp de Ortod. 2015;45(3):129-135.

[12]. Bollen AM, Cunha-Cruz J, Bakko DW, Huang GJ, Hujoel PP. The effects of orthodontic therapy on periodontal health: a systematic review of controlled evidence. J Am Dent Assoc. 2008;139(4):413-22. https://doi.org/10.14219/jada.archive.2008.0184. PMID: 18385 025.

[13]. Sendyk M, Linhares DS, Pannuti CM, Paiva JB, Rino Neto J. Effect of orthodontic treatment on alveolar bone thickness in adults: a systematic review. Dental Press J Orthod. 2019;24(4):34-45. https://doi.org/10.1590/21776709.2 4.4.034-045.oar. PMID: 31 508705; PMCID: PMC 6733232.

[14]. Bonta H, Carranza N, Gualtieri AF, Rojas MA. Morphological characteristics of the facial bone wall related to the tooth position in the alveolar crest in the maxillary anterior. Acta Odontol Latinoam. 2017;30(2):49-56. PMID: 29248938.

[15]. Devereux L, Moles D, Cunningham SJ, McKnight M. How important are lateral cephalometric radiographs in orthodontic treatment planning? Am J Orthod Dentofacial Orthop. 2011;139(2):e175-81. https://doi.org/10.1016/j.ajodo.2010.09.021. PMID: 21300228.

[16]. Durão AR, Pittayapat P, Rockenbach MI, Olszewski R, Ng S, Ferreira AP, Jacobs R. Validity of 2D lateral cephalometry in orthodontics: a systematic review. Prog Orthod. 2013;14(1):31. https://doi.org/10.1186/2196-1042-14-31. PMID: 24325757; PMCID: PMC3882109.

[17]. Mah JK, Huang JC, Choo H. Practical applications of cone-beam computed tomography in orthodontics. J Am Dent Assoc. 2010;141 Suppl 3:7S-13S. https://doi.org/10.14219/jada.archive.2010.0361.

[18]. Li Y, Deng S, Mei L, Li J, Qi M, Su S, Li Y, Zheng W. Accuracy of alveolar bone height and thickness measurements in cone beam computed tomography: a systematic review and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128(6):667-679. https://doi.org/10.1016/j.oooo.2019.05.010Epub2019
May 24. PMID: 31311766.

[19]. El Nahass H, N Naiem S. Analysis of the dimensions of the labial bone wall in the anterior maxilla: a cone-beam computed tomography study. Clin Oral Implants Res. 2015;26(4):e57-e61. https://doi.org/10.1111/clr.12332. Epub 2014 Jan 23. PMID: 24450845.

[20]. Lee SL, Kim HJ, Son MK, Chung CH. Anthropometric analysis of maxillary anterior buccal bone of Korean adults using cone-beam CT. J Adv Prosthodont. 2010;2(3):92-6. https://doi.org/10.4047/jap.2010.2. 3.92. Epub 2010 Sep 30. PMID: 21165276; PMCID: PMC2994701.

[21]. Rojo-Sanchis J, Soto-Peñaloza D, Peñarrocha-Oltra D, Peñarrocha-Diago M, Viña-Almunia J. Facial alveolar bone thickness and modifying factors of anterior maxillary teeth: a systematic review and meta-analysis of cone-beam computed tomography studies. BMC Oral Health. 2021;21(1):143. https://doi.org/10.1186/s12903-021-01495-2. PMID: 33752651; PMCID: PM C7986564.

[22]. Fuentes R, Flores T, Navarro P, Salamanca C, Beltrán V, Borie E. Assessment of buccal bone thickness of aesthetic maxillary region: a cone-beam computed tomography study. J Periodontal Implant Sci.2015; 45(5):162-8. https://doi.org/10.5051/jpis.2015.45.5. 162. Epub 2015 Oct 26. PMID: 26550524; PMCID: PMC4635437.

[23]. Tsigarida A, Toscano J, de Brito Bezerra B, Geminiani A, Barmak AB, Caton J, Papaspyridakos P, Chochlidakis K. Buccal bone thickness of maxillary anterior teeth: A systematic review and meta-analysis. J Clin Periodontol. 2020;47(11):1326-1343. https://doi.org/10.1111/jcpe.13 347. Epub 2020 Sep 16. PMID: 32691437.

[24]. Ghassemian M, Nowzari H, Lajolo C, Verdugo F, Pirronti T, D’Addona A. The thickness of facial alveolar bone overlying healthy maxillary anterior teeth. J Periodontol. 2012;83(2):187-97. https://doi.org/10.1902jop.2011.110172. Epub 2011 Jun 21. PMID: 21692627.

[25]. Deguchi T, Nasu M, Murakami K, Yabuuchi T, Kamioka H, Takano-Yamamoto T. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am J Orthod Dentofacial Orthop. 2006;129(6):721.e7-12. https://doi.org/10.1016/j.ajodo.2006.02.026.PMID:1676948 8.

[26]. Pittayapat P, Bornstein MM, Imada TS, Coucke W, Lambrichts I, Jacobs R. Accuracy of linear measu-rements using three imaging modalities: two lateral cephalograms and one 3D model from CBCT data. Eur J Orthod. 2015;37(2):202-8. https://doi.org/10.1093/ejo/cju036. Epub 2014 Aug 26. PMID: 25161199.

[27]. Teerakanok S, Charoemratrote C, Chanmanee P. The Accuracy of Lateral Cephalogram in Repre-senting the Anterior Maxillary Dentoalveolar Po-sition. Diagnostics. 2022;12(8):1840. https://doi.org/10.3390diagnostics12081840. PMID: 36010191; PMCID: PMC9406342.
Published
2023-07-18
How to Cite
VERGARA, Carolina et al. Concordance of the vestibular bone thickness at the level of point a between teleradiography and cone beam computed tomography. Journal of Oral Research, [S.l.], v. 12, n. 1, p. 63-74, july 2023. ISSN 0719-2479. Available at: <https://www.joralres.com/index.php/JOralRes/article/view/joralres.2023.006>. Date accessed: 24 apr. 2024. doi: https://doi.org/10.17126/joralres.2023.006.
Section
Articles