Comparison of marginal adaptation between a monoincremental resin with sonic activation and a conventional resin.

  • Javier Villa Escuela de Odontología, Universidad Austral de Chile, Valdivia.
  • Rosemarie Meier Escuela de Odontología, Universidad Austral de Chile, Valdivia.
  • Patricio Ruiz Escuela de Odontología, Universidad Austral de Chile, Valdivia.
  • Diego Halabí Escuela de Odontología, Universidad Austral de Chile, Valdivia.

Abstract

Aim: To determine differences in marginal adaptation between a conventional composite resin and a monoincremental resin with sonic activation. Materials and methods: 32 composite resin discs of 2.5mm in diameter and 2mm thick were fabricated in a propylene matrix and distributed in 2 groups of 16 samples each. Groups 1 FiltekTMZ350XT resin; Group 2 SonicFillTM resin with sonic activation. The gap generated between the resin and the matrix as a result of the polymerization shrinkage was analyzed in microns using a microscope at a magnification of 40X. The percentage of the lineal polymerization shrinkage was also calculated. To calculate differences in marginal adaptation between the two resins statistical analysis was performed using the unpaired t-test. Results: The extent of the gaps measured in microns and their respective standard deviations were SonicFillTM 9.95 ± 3.05 and FiltekTMZ350XT 10.21 ± 5.14 (p=.86). Conclusion: The use of the monoincremental resin system with sonic activation shows a marginal adaptation similar to that of conventional resin composites, with no statistically significant differences between the studied resins.

 

References

1. Ferracane JL. Resin composite--state of the art. Dent Mater. 2011; 27(1): 29-38.
2. Braga R, Ballester R, Ferracane J. Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dent Mater. 2005; 21(10): 962-970.
3. Barnes DM, Blank LW, Thompson VP, Holston AM, Gingell J. A 5- and 8-year clinical evaluation of posterior composite resin. Quintessence Int. 1991; 22(2): 143-151.
4. Li J, Thakur P, Fok AS. Shrinkage of dental composite in simulated cavity measured with digital image correlation. J Vis Exp 2014; (89).
5. De Melo Monteiro GQ, Montes MA, Rolim TV, de Oliveira Mota CC, de Barros Correia Kyotoku B, Gomes AS, de Freitas AZ. Alternative methods for determining shrinkage in restorative resin composites. Dent Mater. 2011; 27(8): 176-185.
6. Chang M, Dennison J, Yaman P. Physical property evaluation of four composite materials. Oper Dent. 2013; 38(5): 144-153.
7. Weig KM, Magalhães Filho TR, Costa Neto CA, Costa MF. Evaluation of polymerization shrinkage of dental composites by an optical method. Mater Sci Eng C Mater Biol Appl. 2015; 47: 70-76.
8. Li X, Pongprueksa P, Van Meerbeek B, De Munck J. Curing profile of bulk-fill resin-based composites. J Dent. 2015; 43(6): 664-672.
9. Kim RJ, Kim YJ, Choi NS, Lee IB. Polymerization shrinkage, modulus, and shrinkage stress related to tooth-restoration interfacial debonding in bulk-fill composites. J Dent. 2015; 43(4): 430-439.
10. Al-Harbi F, Kaisarly D, Bader D, El Gezawi M. Marginal integrity of bulk versus incremental fill class II composite restorations. Oper Dent. 2015. [Epub ahead of print].
11. García D, Yaman P, Dennison J, Neiva G. Polymerization shrinkage and depth of cure of bulk fill flowable composite resins. Oper Dent. 2014; 39(4): 441-448.
12. Esquibel K, González A, Bracho-Troconis C. Physical properties of a new bulk fill flowable composite. Dent Mater. 2014; 30(S): 49-50.
13. Kerr Corporation (Orange, CA). Sonic FillTM. Claremont, CA; US 20120302662 A1, 2012.
14. Cuevas S. Sonic activation: new paradigm for composite resins. Dent Today 2011; 30(8): 100: 102-103.
15. Roberts OW, Vandewalle KS, Berzins DW, Charlton DG. Accuracy of LED and Halogen Radiometers Using Different Light Sources. J Esthet Restor Dent. 2006 18(4): 214–224.
16. Faggion CMJr. Guidelines for reporting pre – clinical in vitro studies on dental materials. J Evid Based Dent Pract. 2012; 12(4): 182-189.
17. Anusavice KJ. Phillips Ciencia de los Materiales Dentales. 11th ed. Madrid: Elsevier Science; 2004.
18. Sakaguchi RL, Wiltbank BD, Shah NC. Critical configuration analysis of four methods for measuring polymerization shrinkage strain of composites. Dent Mater. 2004; 20(4): 388-396.
19. Knezevic A, Sariri K, Sovic I, Demoli N, Tarle Z. Shrinkage evaluation of composite polymerized with LED units using laser interferometry. Quintessence Int. 2010; 41(5): 417-425.
20. Lee IB, Min SH, Seo DG. A new method to measure the polymerization shrinkage kinetics of composites using a particle tracking method with computer vision. Dent Mater. 2012; 28(2): 212-218.
21. Moraes RR, García JW, Barros MD, Lewis SH, Pfeifer CS, Liu J, Stansbury JW. Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials. Dent Mater. 2011; 27(6): 509-519.
22. Fu J, Liu W, Hao Z, Wu X, Yin J, Panjiyar A, Liu X, Shen J, Wang H. Characterization of a low shrinkage dental composite containing bismethylene spiroorthocarbonate expanding monomer. Int J Mol Sci. 2014; 15(2): 2400-2412.
23. Tantbirojn D, Pfeifer CS, Amini AN, Versluis A. Simple optical method for measuring free shrinkage. Dent Mater. 2015; 31(11): 1271-1278.
24. Hirata R, Clozza E, Giannini M, Farrokhmanesh E, Janal M, Tovar N, Bonfante EA, Coelho PG. Shrinkage assessment of low shrinkage composites using micro-computed tomography. J Biomed Mater Res B Appl Biomater. 2015; 103(4): 798-806.
25. Gieck K, Gieck R. Engineering formulas. 7th ed. New York: McGraw-Hill; 1997.
26. 3M ESPE. Perfil técnico del producto FiltekTM Z350XT sistema restaurador universal; 2010 [Accesed july 4, 2015]. Available at: http://multimedia.3m.com/mws/media/725177O/perfil-tecnico-filtek-z350-xt.pdf.
27. Peters D. Ultrasound in materials chemistry. J Mater Chem. 1996; 6(10): 1605-1618.
28. Suslick KS, Price GJ. Applications of ultrasound to materials chemistry. Annu Rev Mater Sci. 1999; 29: 295-326.
29. Ghivari S, Chandak M, Manvar N. Role of oxygen inhibited layer on shear bond strength of composites. J Conserv Dent. 2010; 13(1): 39-41.
30. Bijelic-Donova J, Garoushi S, Lassila LV, Vallittu PK. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength. Eur J Oral Sci. 2015; 123(1): 53-60.
Published
2015-12-01
How to Cite
VILLA, Javier et al. Comparison of marginal adaptation between a monoincremental resin with sonic activation and a conventional resin.. Journal of Oral Research, [S.l.], v. 4, n. 6, p. 387-392, dec. 2015. ISSN 0719-2479. Available at: <https://www.joralres.com/index.php/JOralRes/article/view/joralres.2015.074>. Date accessed: 29 apr. 2024. doi: https://doi.org/10.17126/joralres.2015.074.
Section
Articles

Keywords

Polymerization; Ultrasound; Composite resins; Dental Materials.