Effect of sonic versus ultrasonic activation on aqueous solution penetration in root canal dentin.

  • Dámaris Macías School of Dentistry, Universidad Austral de Chile.
  • Víctor Bravo School of Dentistry, Universidad Austral de Chile.
  • Diego Echeverría School of Dentistry, Universidad Austral de Chile.


The aim of this study was to observe the penetration of an aqueous solution into the root canal dentin under sonic activation and ultrasonic activation. Materials and Method: This study consisted of experimental in vitro research. In order to achieve a closed system, the apex of 45 single-rooted teeth was sealed with wax. The step-back technique was manually performed using a K50 apical master file and 3 groups were organized according to the protocol of the final irrigant activation: Group I: non-activated Chinese ink for 30 seconds, Group II: Chinese ink sonically activated with EndoActivator for 30 seconds, and Group III: Chinese ink ultrasonically activated with Varios 350 equipment for 30 seconds. Teeth were sectioned longitudinally, and the samples obtained were observed under a stereomicroscope at 1X magnification in order to be photographed and scanned to calculate the penetration area using the Image J software. The tinted radicular area was evaluated in relation to the total area of the root dentin. The Tukey’s post-hoc test and ANOVA were used for the statistical analysis (p<0.05). Results: Group I and II obtained 9.13% and 9.42% penetration respectively, while in group III the highest degree of dye infiltration was achieved (13.9%), being statistically significant (p<0.001). Conclusions: Ultrasonic activation produced a significantly higher penetration of the dye when compared to conventional activation and sonic activation.


1. Balandrano Pinal F. Soluciones para irrigación en endodoncia: hipoclorito de sodio y gluconato de clorhexidina. Rev Cient Ondontol. 2007;3(1):11–4.
2. Shahi S, Yavari HR, Rahimi S, Eskandarinezhad M, Shakouei S, Unchi M. Comparison of the sealing ability of mineral trioxide aggregate and Portland cement used as root-end filling materials. J Oral Sci. 2011;53(4):517–22.
3. Spoorthy E, Velmurugan N, Ballal S, Nandini S. Comparison of irrigant penetration up to working length and into simulated lateral canals using various irrigating techniques. Int Endod J. 2013;46(9):815–22.
4. De Castro PH, Pereira JV Jr, Sponchiado EC, Marques AA, Garcia Lda F. Evaluation of marginal leakage of different temporary restorative materials in Endodontics. Contemp Clin Dent. 2013;4(4):472–5.
5. Guevara D. Efecto de diferentes concentraciones de hipoclorito de sodio como irrigante endodóntico sobre propiedades físicas de la dentina. Una revisión de la literatura. Bogotá, Colombia: Universidad Nacional de Colombia. Facultad de Odontología, Especialidad en Endodoncia; 2014.
6. Kumar VR, Bahuguna N, Manan R. Comparison of efficacy of various root canal irrigation systems in removal of smear layer generated at apical third: An SEM study. J Conserv Dent. 2015;18(3):252–6.
7. Mancini M, Cerroni L, Iorio L, Armellin E, Conte G, Cianconi L. Smear layer removal and canal cleanliness using different irrigation systems (EndoActivator, EndoVac, and passive ultrasonic irrigation): field emission scanning electron microscopic evaluation in an in vitro study. J Endod. 2013;39(11):1456–60.
8. Pérez VI, Rodríguez PA, Echeverri D. Activación Sónica Versus Ultrasónica de EDTA al 10% para Remoción de Barrillo Dentinario en el Tercio Apical del Canal Radicular. Int J Odontostomat. 2014;8(1):153–9.
9. Helvacıoğlu Kıvanç B, Deniz Arısu H, Yanar NO, Silah HM, İnam R, Görgül G. Apical extrusion of sodium hypochlorite activated with two laser systems and ultrasonics: a spectrophotometric analysis. BMC Oral Health. 2015;15:71.
10. Generali L, Cavani F, Serena V, Pettenati C, Righi E, Bertoldi C. Effect of Different Irrigation Systems on Sealer Penetration into Dentinal Tubules. J Endod. 2017;43(4):652–6.
11. Capar ID, Ozcan E, Arslan H, Ertas H, Aydinbelge HA. Effect of different final irrigation methods on the removal of calcium hydroxide from an artificial standardized groove in the apical third of root canals. J Endod. 2014;40(3):451–4.
12. Gokturk H, Ozkocak I, Buyukgebiz F, Demir O. Effectiveness of various irrigation protocols for the removal of calcium hydroxide from artificial standardized grooves. J Appl Oral Sc. 2017;25(3):290–9.
13. Lloyd A, Navarrete G, Marchesan MA, Clement D. Removal of calcium hydroxide from Weine Type II systems using photon-induced photoacoustic streaming, passive ultrasonic, and needle irrigation: a microcomputed tomography study. J Appl Oral Sci. 2016;24(6):543–8.
14. Nakamura VC, Pinheiro ET, Prado LC, Silveira AC, Carvalho APL, Mayer MPA, Gavini G. Effect of ultrasonic activation on the reduction of bacteria and endotoxins in root canals: a randomized clinical trial. Int Endod J. 2017:[Epub ahead of print].
15. Neuhaus KW, Liebi M, Stauffacher S, Eick S, Lussi A. Antibacterial Efficacy of a New Sonic Irrigation Device for Root Canal Disinfection. J Endod. 2016;42(12):1799–1803.
16. Mitchell RP, Baumgartner JC, Sedgley CM. Apical extrusion of sodium hypochlorite using different root canal irrigation systems. J Endod. 2011;37(12):1677–81.
17. Khalap ND, Kokate S, Hegde V. Ultrasonic versus sonic activation of the final irrigant in root canals instrumented with rotary/reciprocating files: An in-vitro scanning electron microscopy analysis. J Conserv Dent. 2016;19(4):368–72.
18. Gu LS, Kim JR, Ling J, Choi KK, Pashley DH, Tay FR. Review of contemporary irrigant agitation techniques and devices. J Endod. 2009;35(6):791–804.
19. Peters OA, Schönenberger K, Laib A. Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J. 2001;34(3):221–30.
20. Ávila S, Rosas G, García Salmones JA, Rosas Bernal N, Llamosas Hernández E. Estudio histológico descriptivo de la colonización de bacterias en los túbulos dentinarios de dientes extraídos con necrosis pulpar. Rev ADM. 2017;74(2):69–73.
21. Plotino G, Cortese T, Grande NM, Leonardi DP, Di Giorgio G, Testarelli L, Gambarini G. New Technologies to Improve Root Canal Disinfection. Braz Dent J. 2016;27(1):3–8.
22. Kanumuru PK, Sooraparaju SG, Konda KR, Nujella SK, Reddy BK, Penigalapati SR. Comparison of Penetration of Irrigant Activated by Traditional Methods with A Novel Technique. J Clin Diagn Res. 2015;9(11):ZC44–7.
23. Macedo R, Verhaagen B, Rivas DF, Versluis M, Wesselink P, van der Sluis L. Cavitation measurement during sonic and ultrasonic activated irrigation. J Endod. 2014;40(4):580–3.
24. Sáinz-Pardo M, Estevez R, Pablo ÓV, Rossi-Fedele G, Cisneros R. Root canal penetration of a sodium hypochlorite mixture using sonic or ultrasonic activation. Braz Dent J. 2014;25(6):489–93.
25. Vadhana S, Latha J, Velmurugan N. Evaluation of penetration depth of 2% chlorhexidine digluconate into root dentinal tubules using confocal laser scanning microscope. Restor Dent Endod. 2015;40(2):149–54.
26. Ghorbanzadeh A, Aminsobhani M, Sohrabi K, Chiniforush N, Ghafari S, Shamshiri AR, Noroozi N. Penetration Depth of Sodium Hypochlorite in Dentinal Tubules after Conventional Irrigation, Passive Ultrasonic Agitation and Nd:YAG Laser Activated Irrigation. J Lasers Med Sci. 2016;7(2):105–11.
27. Merino A, Estevez R, de Gregorio C, Cohenca N. The effect of different taper preparations on the ability of sonic and passive ultrasonic irrigation to reach the working length in curved canals. Int Endod J. 2013;46(5):427–33.
28. Castelo-Baz P, Varela-Patiño P, Cantatore G, Domínguez-Perez A, Ruíz-Piñón M, Miguéns-Vila R, Martín-Biedma B. In vitro comparison of passive and continuous ultrasonic irrigation in curved root canals. J Clin Exp Dent. 2016;8(4):e437–41.
29. Torabinejad M, Khademi AA, Babagoli J, Cho Y, Johnson WB, Bozhilov K, Kim J, Shabahang S. A new solution for the removal of the smear layer. J Endod. 2003;29(3):170–5.
How to Cite
MACÍAS, Dámaris; BRAVO, Víctor; ECHEVERRÍA, Diego. Effect of sonic versus ultrasonic activation on aqueous solution penetration in root canal dentin.. Journal of Oral Research, [S.l.], v. 7, n. 1, p. 24-29, dec. 2017. ISSN 0719-2479. Available at: <http://www.joralres.com/index.php/JOR/article/view/joralres.2017.089>. Date accessed: 06 june 2020. doi: https://doi.org/10.17126/joralres.2017.089.


passive ultrasonic irrigation; passive sonic irrigation; irrigation penetration.