CoCrMo alloy as biomaterial for bone reconstruction in oral and maxillofacial surgery: A scoping review.

  • Jésica Zuchuat Bioimplants Laboratory, Faculty of Engineering, National University of Entre Rios, Argentina.
  • Andrea Cura Laboratorio de Neurobiología Experimental, FB-UNER, Gualeguaychú, Argentina.
  • Adriana Manzano Centro de Investigaciones Científicas y de Transferencia Tecnológica para la Producción (CICyTTP- CONICET), Argentina.
  • Oscar Decco Bioimplants Laboratory, Faculty of Engineering, National University of Entre Rios, Argentina.


Background: Osseointegration allowed for a breakthrough in biomaterials and techniques and it has contributed to increased application of dental implants. However, insufficient bone level is a frequent problem and it creates an anatomically less favourable base for implant placement. The first surgical procedure should comprise the reconstruction of the alveolar bone height. CoCrMo alloys are nowadays considered as highly corrosion resistant and biocompatible materials in dentistry, and therefore has been suggested as a suitable biomaterial for guided bone regeneration and tissue engineering. Aim: To determine the use of CoCrMo alloy for implantable devices in oral and maxillofacial surgery and to discuss the potential of this alloy for bone regeneration and repair through a scoping review. Material and methods: The search was done by using various databases including PubMed, Thomson Reuters and Scopus. We selected English literature related to studies reporting the CoCrMo properties and manufacturing processes and findings related to bone-forming techniques. Data was compared qualitatively. Results: 90 studies were selected according to the inclusion criteria. We reported different manufacturing techniques and their advantages related to mechanical, chemical and biocompatible properties. Conclusion: Improved tissue reactions of CoCrMo implant devices can be acquired by the application of novel techniques and surface modifications. Moreover, several processes have demonstrated to improve the in vitro and in vivo biocompatibility of the CoCrMo alloy to promote the attachment, proliferation and guided differentiation of seeding cells.


1. Sheikh Z, Sima C, Glogauer M. Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials. 2015;8(6): 2953-2993.
2. Wen B, Shafer D, Schleier P, Pendrys D, Kuhn L, Freilich M. Implant‐guided supracrestal alveolar bone growth using scaffolds, BMP‐2, and novel scaffold‐retaining device. Clin. Oral Implants Res. 2017;28(11):1411-20.
3. Chang HC, Yang C, Feng F, Lin FH, Wang CH, Chang PC. Bone morphogenetic protein-2 loaded poly (D, L-lactide-co-glycolide) microspheres enhance osteogenic potential of gelatin/hydroxyapatite/β-tricalcium phosphate cryogel composite for alveolar ridge augmentation. J Formos Med Assoc. 2017;116(12):973-81.
4. Decco O, Beltrán V, Zuchuat J, Gudiño R. Comparative in vitro study of surface treatment of grade II titanium biomedical implant: VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014. Springer. 2015; 183-6.
5. Hedberg YS, Qian B, Shen Z, Virtanen S, Wallinder IO. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting. Dental materials. 2014;30(5): 525-34.
6. Guoqing Z, Yongqiang Y, Changhui S, Fan F, Zimian Z. Study on Biocompatibility of CoCrMo Alloy Parts Manufactured by Selective Laser Melting. J Med Biol Eng. 2018;38(1): 76-86.
7. Thandapani G, Radha E, Jayashri J, Florence JAK, Sudha PN. Bioactive metallic surfaces for bone tissue engineering. Fundamental Biomaterials: Metals. Woodhead Publishing. 2018
8. Mengucci P, Barucca G, Gatto A, Bassoli E, Denti L, Fiori F, Girardin E, Bastianoni P, Rutkowski B, Czyrska-Filemonowicz A. Effects of thermal treatments on microstructure and mechanical properties of a Co–Cr–Mo–W biomedical alloy produced by laser sintering. J Mech Behav Biomed Mater 2016;60: 106-17.
9. Yuan W, He X, Zhou X, Zhu Y. Hydroxyapatite Nanoparticle-Coated 3D-Printed Porous Ti6Al4V and CoCrMo Alloy Scaffolds and Their Biocompatibility to Human Osteoblasts. J Nanosci Nanotechnol. 2018;18(6): 4360-5.
10. Guoqing Z, Junxin L, Jin L, Chengguang Z, Zefeng X. Simulation Analysis and Performance Study of CoCrMo Porous Structure Manufactured by Selective Laser Melting. J Mater Eng Perform. 2018;27(5): 2271-80.
11. Chen Q, Thouas GA. Metallic implant biomaterials. Materials Science and Engineering: R: Reports. 2015; 87: 1-57.
12. Malara P, Dobrzański LB. Computer-aided design and manufacturing of dental surgical guides based on cone beam computed tomography. Arch Mat Scie and Eng. 2015;76(2): 140-9.
13. Rajťúková V, Poláček I, Tóth T, Živčák J, Ižáriková G, Kovačevic M, Somoš A, Hudák R. The manufacturing precision of dental crowns by two different methods is comparable. Lékař a technika-Clinician and Technology. 2016;46(4):102-6.
14. Seramak T, Zasinska K, Zielinski A, Gubanski M. 3D Printing of metallic implants. WJRR. 2017; 5(4):1-4.
15. Yan Y, Neville A, Dowson D. Biotribocorrosion of CoCrMo orthopaedic implant materials—assessing the formation and effect of the biofilm. Tribology International. 2007;40(10-12): 1492-9.
16. Gilbert JL, Sivan S, Liu Y, Kocagöz SB, Arnholt CM, Kurtz SM. Direct in vivo inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces. J Biomed Mater Res A. 2015;103(1):211-23.
17. Wang Q, Eltit F, Garbuz D, Duncan C, Masri B, Greidanus N, Wang R. CoCrMo metal release in metal‐on‐highly crosslinked polyethylene hip implants. J Biomed Mater Res B. 2020;108(4):1213-28.
18. Nair M, Elizabeth E. Applications of titania nanotubes in bone biology. J Nanosci Nanotechnol. 2015;15(2): 939-55.
19. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, Hempel S, Akl EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garritty C, Lewin S, Godfrey CM, Macdonald MT, Langlois EV, Soares-Weiser K, Moriarty J, Clifford T, Tunçalp Ö, Straus SE. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467-73.
20. ASTM F75, Standard Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Castings and Casting Alloy for Surgical Implants (UNS R30075) 1, ASTM International, Annual Book of Standards, West Consho-hocken, PA; 2014.
21. Mani G. Metallic Biomaterials: Cobalt-Chromium Alloys: Handbook of Biomaterial Properties. New York: Springer; 2016.
22. Venable CS, Stuck WG. The internal fixation of fractures. Springfield, Illinois, 1947.
23. Oliveira MF. Aplicações da Prototipagem Rápida em Projetos de Pesquisa. [S.l.]: Unicamp, 2008.
24. Song C, Zhang M, Yang Y, Wang D, Jia-kuo Y. Morphology and properties of CoCrMo parts fabricated by selective laser melting. Mater Scie Eng.A. 2018;713: 206-13.
25. Mantrala KM, Das M, Balla VK, Rao CS, Rao VK. Laser-deposited CoCrMo alloy: Microstructure, wear, and electrochemical properties. J Mat Res. 2014;29(17): 2021-7.
26. Park JB, Jung KH, Kim KM, Son Y, Lee JI, Ryu JH. Microstructure of As-cast Co-Cr-Mo Alloy Prepared by Investment Casting. J Korean Phys Soc. 2018;72(8): 947-51.
27. Narushima T, Ueda K. Co-Cr Alloys as Effective Metallic Biomaterials: Advances in Metallic Biomaterials. Berlin: Springer. 2015.
28. Beltran AM. Cobalt-base alloys: Superalloys II. New York: Wiley. 1987.
29. Zhang M, Yang Y, Song C, Bai Y, Xiao Z. An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting. Journal of Alloys and Compounds. 2018;750: 878-86.
30. España FA, Balla VK, Bose S, Bandyopadhyay A. Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping. Materials Science and Engineering: C. 2010;30(1): 50-7.
31. Jenko M, Gorensek M, Godec M, Hodnik M, Batic BS, Donik C, Grant JT, Dolinar D. Surface chemistry and microstructure of metallic biomaterials for hip and knee endoprostheses. Applied Surface Science. 2018; 427: 584-93.
32. Narushima T, Mineta S, Kurihara Y, Ueda K. Precipitates in biomedical Co-Cr alloys. JOM. 2013; 65:489–504.
33. Ramírez LE, Castro M, Méndez M, Lacaze J, Herrrera M, Lesoult G. Precipitation path of secondary phases during solidification of the CoCrMoC alloy. Scr Mater. 2002; 47:811–6.
34. Amigo Borrás V, Paolini A, Moreno Ballester JF, Vicente Escuder A, Romero Sanchis F. Estudio de la influencia de los tratamientos térmicos en la microdureza y microestructura de aleaciones CoCrMo. Congreso Nacional de Propiedades Mecánicas de Sólidos, Gandia. 2002: 487–96.
35. González-Carrasco, JL. Metals as bone repair materials. Bone repair biomaterials. 2009: 154-93.
36. Yamanaka K, Mori M, Chiba A. Assessment of precipitation behavior in dental castings of a Co-Cr-Mo alloy. J Mech Behav Biomed Mater. 2015;50:268-76.
37. Lee SH, Uchikanezaki T, Nomura N, Nakamura M, Chiba A. Effects of zirconium addition on microstructures and mechanical properties of Co-29Cr-6Mo alloy. Materials transactions. 2007; 48(5): 1084-1088. Available from: doi: 10.2320/matertrans.48.1084.
38. Yamanaka K, Mori M, Chiba A. Developing high strength and ductility in biomedical Co–Cr cast alloys by simultaneous doping with nitrogen and carbon. Acta biomaterialia. 2016; 31: 435-47.
39. Yamanaka K, Mori M, Chiba A. Effects of nitrogen addition on microstructure and mechanical behavior of biomedical Co–Cr–Mo alloys. J Mech Behav Biomed Mater. 2014; 29:417–26.
40. Patrascu I, Vasilescu VG, Milicescu S. Modern methods for assessing the corrosion resistance of dental alloys used in dentistry: Developments in Corrosion Protection. IntechOpen. 2014.
41. Dimic I, Cvijović-Alagić I, Obradovic N, Petrovic J, Putić SS, Rakin MP, Bugarski B. In vitro biocompatibility assessment of Co-Cr-Mo dental cast alloy. Journal of the Serbian Chemical Society. 2015;80(12): 1541-52.
42. Hoffman EE, Lin A, Liao Y, Marks LD. Grain boundary assisted crevice corrosion in CoCrMo alloys. Corrosion. 2016;72: 1445–61.
43. Lin A, Hoffman EE, Marks LD. Effects of Grain Boundary Misorientation and Chromium Segregation on Corrosion of CoCrMo Alloys. Corrosion. 2016; 73(3): 256-67.
44. Zhang X, Li Y, Tang N, Onodera E, Chiba A. Corrosion behaviour of CoCrMo alloys in 2 wt% sulphuric acid solution. Electrochimica Acta. 2014; 125: 543-55.
45. Zeng P, Rainforth WM, Cook RB. Characterisation of the oxide film on the taper interface from retrieved large diameter metal on polymer modular total hip replacements. Tribology International. 2015; 89, 86-96.
46. Valero-Vidal C, Casabán-Julián L, Herraiz-Cardona I, Igual-Muñoz A. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance. Mat Scie Eng.C. 2013;33(8): 4667-76.
47. Cawley J, Metcalf JEP, Jones AH, Band TJ, Skupien DS. A tribological study of cobalt chromium molybdenum alloys used in metal-on-metal resurfacing hip arthroplasty. Wear. 2003;255: 999–1006.
48. Guo G, Dong G, Dong L. High temperature passive film on the surface of Co–Cr–Mo alloy and its tribological properties. Appl Surf Sci. 2014;314: 777-85.
49. Munoz AI, Schwiesau J, Jolles BM, Mischler, S. In vivo electrochemical corrosion study of a CoCrMo biomedical alloy in human synovial fluids. Acta biomaterialia. 2015;21: 228-236.
59. Wang Z, Yan Y, Su Y, Qiao L. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment. Appl Surf Scie. 2017;406: 319-329.
51. Aslan M, Çomakli O, Yazici M, Yetim AF, Bayrak Ö, Çelik A. The Effect of Plasma Oxidation and Nitridation on Corrosion Behavior of CoCrMo Alloy in SBF Solution. Sur Rev Letters. 2018;25(08).
52. Bedolla Gil Y. Estudio de las propiedades mecánicas, tribológicas y electroquímicas de aleaciones CoCrMoC con adiciones de boro (Doctoral dissertation, Universidad Autónoma de Nuevo León). 2014.
53. Rodriguez-Castro GA, Reséndiz-Calderon CD, Jiménez-Tinoco LF, Meneses-Amador A, Gallardo-Hernandez EA, Campos-Silva IE. Micro-abrasive wear resistance of CoB/Co2B coatings formed in CoCrMo alloy. Surf Coat Tech. 2015;284:258-63.
54. Hernandez-Rodriguez MA, Laverde-Cataño DA, Lozano D, Martinez-Cazares G, Bedolla-Gil Y. Influence of Boron Addition on the Microstructure and the Corrosion Resistance of CoCrMo Alloy. Metals. 2019;9(3), 307.
55. Zhang TF, Deng QY, Liu B, Wu BJ, Jing FJ, Leng YX, Huang N. Wear and corrosion properties of diamond like carbon (DLC) coating on stainless steel, CoCrMo and Ti6Al4V substrates. Surf Coat Tech. 2015;273: 12-19.
56. Golsefatan HR, Fazeli M, Mehrabadi AR, Ghomi H. Enhancement of corrosion resistance in thermal desalination plants by diamond like carbon coating. Desalination. 2017;409: 183-8.
57. Luo Y, Yang T, Liu Q. Friction and wear of diamond-like carbon film deposited on CoCrMo alloy under different lubrication. International J Mat Res. 2016;107(7): 631-636.
58. Chang L, Zhifeng Z, Kwok-Yan L. Improved corrosion resistance of CoCrMo alloy with self-passivation ability facilitated by carbon ion implantation. Electrochimica Acta. 2017;241: 331-40.
59. Logan N, Sherif A, Cross AJ, Collins SN, Traynor A, Bozec L, Parkin IP, Brett P. TiO2-coated CoCrMo: improving the osteogenic differentiation and adhesion of mesenchymal stem cells in vitro, J Biomed Mater Res. A. 2015;103: 1208e1217.
60. Cetiner D, Paksoy AH, Tazegul O, Baydogan M, Guleryuz H, Cimenoglu H, Atar E. A novel fabrication method for a TiO2 layer over CoCr alloy. Surf Eng. 2018; 1-8.
61. Murr LE, Gaytan SM, Martinez E, Medina F, Wicker RB. Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int. J. Biomater. 2012.
62. Petit C, Maire E, Meille S, Adrien J, Kurosu S, Chiba A. CoCrMo cellular structures made by Electron Beam Melting studied by local tomography and finite element modelling. Mater. Charact. 2016;116:48-54.
63. Çelik A, Aslan M, Yetim AF, Bayrak Ö. Wear behavior of plasma oxidized CoCrMo alloy under dry and simulated body fluid conditions. J Bionic Eng. 2014;11(2), 303-10.
64. Liu Y, Gilbert JL. The effect of simulated inflammatory conditions and pH on fretting corrosion of CoCrMo alloy surfaces. Wear. 2017;390: 302-311.
65. Gilbert JL, Kubacki GW. Oxidative stress, inflammation, and the corrosion of metallic biomaterials: Corrosion causes biology and biology causes corrosion: Oxidative Stress and Biomaterials. 2016:59-88.
66. Paredes V, Salvagni E, Rodriguez E, Gil FJ, Manero JM. Assessment and comparison of surface chemical composition and oxide layer modification upon two different activation methods on a cocrmo alloy. J Mater Sci Mater Med. 2014;25(2): 311-20.
67. Chaturvedi TP. Allergy related to dental implant and its clinical significance. Clinical, Clin Cosmet Investig Dent. 2013;5, 57-61.
68. Nich C, Goodman SB. Role of macrophages in the biological reaction to wear debris from joint replacements. J Long Term Eff Med Impl. 2014;24(4):259-65.
69. Du Z, Zhu Z, Wang Y. The degree of peri-implant osteolysis induced by PEEK, CoCrMo, and HXLPE wear particles: a study based on a porous Ti6Al4V implant in a rabbit model. J Orthop Surg Res. 2018;13(1): 23.
70. Salloum Z, Lehoux EA, Harper ME, Catelas I. Effects of cobalt and chromium ions on oxidative stress and energy metabolism in macrophages in vitro. J Orthop Res. 2018;36:3178–87.
71. Armstead AL, Simoes TA, Wang X, Brydson R, Brown A, Jiang BH, Li B. Toxicity and oxidative stress responses induced by nano-and micro-CoCrMo particles. J Mat Chem B. 2017;5(28): 5648-57.
72. Vanos R, Lildhar LL, Lehoux EA, Beaule PE, Catelas I. In vitro macrophage response to nanometer‐size chromium oxide particles. J Biomed Mat Res B: Applied Biomaterials. 2014;102(1), 149-159.
73. Hlady V, Buijs J. Protein adsorption on solid surfaces. Current Opinion. Biotechnology. 1996;7: 72-7.
74. Yan Y, Yang H, Su Y, Qiao L. Albumin adsorption on CoCrMo alloy surfaces. Scie reports. 2015;5: 18403.
75. Athanasou NA. The pathobiology and pathology of aseptic implant failure. Bone & joint res . 2016; 5(5): 162-168.
76. Sun D, Wharton JA, Wood RJK, Ma L, Rainforth WM. Microabrasion–corrosion of cast CoCrMo alloy in simulated body fluids. Tribology Int. 2009;42(1): 99-110.
77. Zhang Q, Li K, Yan J, Wang Z, Wu Q, Bi L, Yang M, Han Y. Graphene coating on the surface of CoCrMo alloy enhances the adhesion and proliferation of bone marrow mesenchymal stem cells. Biochem Biophys Res commun. 2018; 497(4): 1011-7.
78. Sidambe AT. Effects of build orientation on 3D-printed Co-Cr-Mo: surface topography and L929 fibroblast cellular response. Int J Adv Manufact Tech. 2018;99(1-4): 867-80.
79. Kim KB, Kim JH, Kim WC, Kim JH. Three-dimensional evaluation of gaps associated with fixed dental prostheses fabricated with new technologies. J prosthet dent. 2014;112(6):1432-6.
80. Sukaryo SG, Fajar M. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method: Journal of Physics: Conference Series. 2016;776(1). IOP Publishing.
81. Liao TT, Zhang TF, Li SS, Deng QY, Wu BJ, Zhang YZ, Zhou YJ, Guo YB, Leng YX, Huang, N. Biological responses of diamond-like carbon (DLC) films with different structures in biomedical application. Mat Scie Eng C. 2016;69: 751-9.
82. Singh B, Singh G, Sidhu BS. Investigation of the in vitro corrosion behavior and biocompatibility of niobium (Nb)-reinforced hydroxyapatite (HA) coating on CoCr alloy for medical implants. J Mat Res. 2019; 1-14.
83. Logan N, Bozec L, Traynor A, Brett P. Mesenchymal stem cell response to topographically modified CoCrMo. J Biomed MatRes A. 2015;103(12):3747-3756.
84. Decco O, Cura A, Beltrán V, Lezcano M, Engelke W. Bone augmentation in rabbit tibia using microfixed cobalt-chromium membranes with whole blood, tricalcium phosphate and bone marrow cells. Int J Clin Exp Med. 2015; 8(1), 135.
85. Decco OA, Beltrán V, Zuchuat JI, Cura AC, Lezcano MF, Engelke W. Bone Augmentation in Rabbit Tibia Using Microfixed Cobalt-Chromium Membranes with Whole Blood and Platelet-Rich Plasma. Materials. 2015; 8(8), 4843-56.
86. Zuchuat J, Berli M, Maldonado Y, Decco O. Influence of Chromium-Cobalt-Molybdenum Alloy (ASTM F75) on Bone Ingrowth in an Experimental Animal Model. J Funct Biomater. 2017;9(1), 2.
87. Stenlund P, Kurosu S, Koizumi Y, Suska F, Matsumoto H, Chiba A, Palmquist A. Osseointegration enhancement by Zr doping of Co-Cr-Mo implants fabricated by electron beam melting. Additive Manufacturing. 2015;6: 6-15.
88. Shah FA, Omar O, Suska F, Snis A, Matic A, Emanuelsson L, Palmquist A. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Acta biomaterialia. 2016;36: 296-309.
89. Shah FA, Jergéus E, Chiba A, Palmquist A. Osseointegration of 3D printed microalloyed CoCr implants—Addition of 0.04% Zr to CoCr does not alter bone material properties. Journal of Biomedical Materials Research Part A. 2018. 90. Bostman O, Pihlajamaki H. Routine implant removal after fracture surgery: a potentially reducible consumer of hospital resources in trauma units. J. Trauma Acute Care Surg. 1996;41(5): 846-849.
How to Cite
ZUCHUAT, Jésica et al. CoCrMo alloy as biomaterial for bone reconstruction in oral and maxillofacial surgery: A scoping review.. Journal of Oral Research, [S.l.], v. 9, n. 4, p. 336-349, sep. 2020. ISSN 0719-2479. Available at: <>. Date accessed: 16 oct. 2021. doi: