Conflict of interests: The author declare no conflicts of interest.

Acknowledgements: This work was carried out under an ongoing collaboration between the Universidad de los Andes and the Lebanese University; supported via operating grants provided to BioMAT’X (Laboratorio de Biomateriales, Farmacéuticos y Bioingeniería de Tejidos Cráneo Máxilo-Facial), member of CIIB (Centro de Investigación e Innovación Biomédica), through the Faculty of Dentistry and PMI (Dra. S. Becerra and Dr. A. Sadarangani) Univ. los Andes, Santiago de Chile and CONICYT-FONDEF (ID # 16110366).


The dental pulp is a multi-structural soft tissue composed of fibroblasts, odontoblasts, lymphocytes, endothelial cells, amongst others; with prominent formative, sensorial, and protective functions. Pulpitis is a painful inflammatory (necrotic) disease caused by untreated dental decay/caries, trauma and multiple restorations; often irreversible/unrecoverable, due to insufficient vascularization, mainly because of the anatomy of the pulp chamber: a small root canal in volume and a narrow apical foramen.

Recently, endodontic regenerative approaches, strategies and biomaterials for treating dental pulp diseases have been receiving ample attention. While regenerative medicine concepts are clear (i.e. stem cells/growth factors/scaffold complex transplantation into the pulp chamber), the main obstacle seems to be associated with identifying the “ideal” scaffold suitable for biologically-functional pulp tissue regeneration; providing a 3-D spatio-temporal structure and a mimicked extracellular matrix (ECM) environment (space:time) for the stem cells to survive, migrate, proliferate and differentiate, within the prepared pulp canal.

Indeed, we witness the design, development and utilization of various scaffolds/bio-scaffolds for dental pulp regeneration, primarily based on prominent natural/synthetic polymers and co-polymers (biocompatible/biodegradable) including collagen and poly(lactic acid). Yet, the literature concludes extant limitation in ability to form dentin, mainly ascribed to lack of dental pulp ECM. Hence, there is a need to construct a regenerative scaffolding matrix containing dental pulp ECM, basically to: (1) selectively bind/localize cells; (2) contain dose-responsive vital cytokines with release-controlled pharmacokinetics; (3) promote odontoblast differentiation; (4) control/regulate dental pulp stem/progenitor cell fate and metabolism; and (5) facilitate correct/functional spatio-temporal dentin formation (undergo safe and timely biodegradation). Consequently, consider scaffold porosity and pore-size (high, preferred) facilitating cell seeding/diffusion and effective transport of nutrients, oxygen, and waste; whilst maintaining an adequate physico-mechanical strength.

So, it is critical to master thorough biomaterial and pharmaceutic knowledge.

Soon, owing to advancements in biomimetic scaffold fabrication technology; whether via combining materials or through utilizing CAD/3-D printing, clinicians shall witness inductive matrices with well-controlled complex behavior; a promising future in completely-functional regenerative endodontics. Keep an eye on acellular (de-cellularized) natural ECM scaffolds combined with human-derived dental pulp stem cells for bio-active pulp tissue regeneration.

REFERENCES.