Clinical effect of platelet rich plasma in the treatment of periodontal intrabony defects. Systematic review and meta-analysis.

Heber Arbildo,1,2,3 Luis Gamarra,4,5 Sandra Rojas,5 Edward Infantes,2,4,6 César Lamas7 & Hernán Vásquez8

Abstract: Introduction: One of the consequences of periodontitis is periodontal intrabony defects (PID). Various biomaterials have been used for its treatment, but there is still no biomaterial considered as the gold standard. Current research is focused on the use of platelet-rich plasma (PRP) for the treatment of PID. Objective: To determine the clinical effect of PRP in the treatment of PID through a systematic review with meta-analysis. Materials and Methods: A literature search was conducted until February 2017 in the biomedical databases: Pubmed, Embase, Scielo, Science Direct, SIGLE, LILACS, IBECS, and the Cochrane Central Register of Clinical Trials. The criteria for the selection of the studies, which were randomized clinical trials, were the following: articles or papers published in the last 5 years, reporting clinical effects, with a follow-up time equal to or greater than 6 months, and a sample size equal to or greater than 10 patients reporting the use of PRP as a treatment for PID. The methodological quality of the studies was analyzed using the Cochrane Handbook of Systematic Reviews of Interventions as a reference. Results: The search strategy yielded nine articles reporting a reduction in probing depth and gingival recession, and an increase in clinical insertion level when using PRP alone or in combination with another biomaterial. Conclusion: The reviewed literature suggests that the use of PRP in the treatment of PID has a positive clinical effect.

Keywords: Platelet-rich plasma; periodontitis; review; meta-analysis.

INTRODUCTION.

Periodontal disease is a multifactorial and complex condition that affects the periodontium. It is characterized by the loss of collagen membrane with the subsequent destruction of the periodontal tissues.1-3 If not treated, the condition will lead to a premature loss of teeth.2,4

The main objectives of periodontal treatment are to eliminate the inflammatory process, prevent the progression of periodontal disease, maintain natural dentition in optimal health and function, and regenerate the lost periodontal tissues.1,5,6 The therapeutic modalities currently used to restore periodontal tissues, such as conventional open flap debridement (COFD), have shown limited potential to achieve the desired results. These techniques fail to regenerate the tissues affected by the disease. In addition, current regenerative procedures offer limited potential for complete periodontal restoration.5,5

One of the consequences of periodontal disease (periodontitis) is
the appearance of periodontal intrabony defects (PID) (proximal and/or marginal bone loss). Various biomaterials, based on endogenous regenerative technology, have been used for treatment, in addition to using autogenous and allogeneic bone grafts. However, there is not any biomaterial considered as the gold standard yet for the treatment of PID.3,5,7,8

The key to tissue regeneration is to produce a cascade of coordinated curative events that can stimulate tissue formation. Such modulators include the use of growth factors (GFs), the application of extracellular matrix proteins, binding factors and the use of bone morphogenetic proteins.2,9,10 The potential role of GFs in periodontal regeneration is currently the focus of research. In recent years, there has been an increase in the scientific evidence that demonstrates their effectiveness in periodontal regeneration.2,5,11-14

GFs are present in platelet alpha granules, which upon release allow the multiplication and development of vascular endothelial cells, smooth muscle cells and fibroblasts. In addition, they induce multiple effects on cellular remodeling and modulate the inflammatory reaction in the healing and tissue regeneration processes.1,2,5,10,14,18

GFs include the platelet-derived growth factor (PDGF) and transforming growth factor β (TGF-β). These factors are the most studied in terms of periodontal regeneration. They are known to facilitate bone regeneration after bone grafting by increasing neoangiogenesis, cellular chemotaxis, mitosis, promoting stem cell proliferation and increasing osteoconduction.1,2,10,14,19 Other GFs, such as endothelial growth factor, vascular endothelial growth factor (VEGF), and type 1 insulin-growth factor, have been shown to have the potential to improve and accelerate the regeneration of hard and soft tissues.1,5,10-15

There is a growing interest in the use of platelet-rich plasma (PRP) for the treatment of PID since it is a concentrated source of autologous platelets enriched with several GFs.2,5,10,14 However, there is a high heterogeneity among the studies that have evaluated the effect of PRP in the treatment of PID.2,14,20-22

The aim of this article was to evaluate the clinical effect of PRP in the treatment of periodontal intrabony defects.

MATERIALS AND METHODS.

This review was carried out according to a research protocol previously developed following the guidelines established in the PRISMA standards.23

Search methodology.

A broad search strategy was conducted in the biomedical databases Pubmed, Embase, Scielo, Science Direct, SIGLE (System of Information on Grey Literature in Europe), LILACS, IBECS, and in the Cochrane Central Register of Clinical Trials. A manual search was also conducted in high impact journals of periodontology such as: Periodontology 2000, Journal of Clinical Periodontology and Journal of Periodontology up to February 2017; using a combination of topic or thematic headings with the following keywords: (“plasma rico en plaquetas” OR “platelet rich plasma” OR “PRP” OR “plasma rich in growth factors”) AND (“defecto intraóseo” OR “defecto periodontal” OR “intrabony defect” OR “infrabony defect” OR “periodontal defect”).

Selection criteria.

The following inclusion criteria were considered: articles reporting the use of PRP in the treatment of PID; articles reporting clinical effects (reduction in probing depth, increase in clinical insertion level and reduction in gingival recession) when using PRP in the treatment of PID; articles published in the last 5 years, because the most current research is also the most rigorously conducted and contains the most relevant data; articles reporting a follow-up time equal to or greater than 6 months, whose sample sizes are equal to or greater than 10 patients, because the longer the follow-up period and the larger the sample size, the more representative the results will be, reducing the margin of error and increasing the level of confidence; articles reporting clinical trials without language restriction.

The following exclusion criteria were considered: articles reporting the use of PRP as a control group; articles published in non-indexed journals.

Process of selection and extraction of data.

The titles and abstracts of all the articles were reviewed. Full texts of the articles that appeared to meet the selection criteria were obtained.

A checklist was made in duplicate to evaluate the studies and to extract the information of interest. Two
reviewers (LG and EI) independently performed the evaluation of the articles regarding title, author, year of publication, type of study, number of patients, age of patients, follow-up time, country where it was conducted, number of areas treated per group, number of patients per group, type of PID treated, reduction in probing depth, increase in clinical insertion level, reduction in gingival recession, number of centrifugations, activators used, post-surgical medication and risk of bias. For the resolution of any discrepancy between the reviewers, they met and discussed with a third reviewer (SR) in order to reach an agreement.

Assessment of the methodological quality and risk of bias of the studies

For the assessment of the methodological quality and risk of bias, each study was analyzed according to the Cochrane Handbook of Systematic Reviews of Interventions.²⁴

Analysis of results

Data from each study were placed and analyzed with RevMan 5.3 (Cochrane Group, UK).

RESULTS.

The initial search yielded a total of 112 titles; Figure 1 shows the selection flowchart. Table 1 also shows the characteristics and variables considered in the nine selected articles. Figure 2 shows the analysis of the methodological quality and the risk of bias of the studies.

Figure 3 presents the forest plot for the reduction in probing depth when using PRP in the treatment of periodontal intrabony defects. Figure 4 shows the forest plot for the increase in clinical insertion level when using PRP in the treatment of periodontal intrabony defects. Figure 5 presents the forest plot for the reduction in gingival recession when using PRP in the treatment of periodontal intrabony defects.”

Figure 1. Article selection flowchart.
Author	Year	Type of study	Number of patients	Age (range)	Follow-up time (months)	Country	Group of study	N° of patients	N° of RPDP (mm)	ICIL (mm)	RGD (mm)	Post-surgical medication	N° of areas	RPM	m	mm	mg	g	\(x\)g	RPM	\(x\)m	mm	mg	g								
Shukla	2016	RCT	20	13/7	9	India	Control (COFD+CPS)	20	20	4.05±1.1	5.00±1.46	NR	NR	2 (2000rpm x 15m; Calcium Chloride NR	NR																	
Agarwal	2016	RCT	10 (7/3)	NA	1 year	India	Control (COFD)	10	9	3.6±1.12	2.8±0.58	NR	NR	3000rpm x 15m	Calcium Chloride	NR																
Gamal	2016	RCT	10	10	3.6±1.12	Egypt	Test (PRP + Menograft)	10	10	4.26±1.35	2.46±1.08	NR	NR																			
Agarwal	2015	RCT	12 (5/7)	45±10.7	6 months	Iran	Control (DFDBA)	12	12	3.15±1.04	2.45±0.76	-0.9±1.06	1 (460g x 8m)	Calcium Chloride	10% Calcium Chloride gel+ 3000rpm x 15m																	
Kodrapanah	2015	RCT	13 (21/19)	39.6±3.9	9 months	Egypt	Test (DFDBA+PRP)	13	13	4.7±0.97	3.5±1.79	-1.2±1.83	1 and 2 (2400rpm x 10m; 2 walls)	Calcium Chloride	10% Calcium Chloride gel+ 3000rpm x 15m																	
Gupta	2014	RCT	10	1 year	3.65±0.62	India	Control (PRF+HA)	10	10	4.6±1.35	2.7±0.63	NR	NR	2400rpm x 10m	Calcium Chloride	10% Calcium Chloride gel+ 3000rpm x 15m																
Agarwal	2014	RCT	24 (14/10)	24	4.6±1.35	India	Test (DFDBA+Saline solution)	24	24	3.5±1.05	2.5±0.83	-0.9±1.06	1 and 2 (2400rpm x 10m; 2 walls)	Calcium Chloride	10% Calcium Chloride gel+ 3000rpm x 15m																	
Döri	2013	RCT	18 (13/5)	13	5 years	Hungary	Test (DFDBA+EMB)	13	13	4.8±0.33	3.2±0.19	-1.6±1.91	1 and 2 (3600rpm x 15m)	Calcium Chloride	10% Calcium Chloride gel+ 3000rpm x 15m																	
Hassan	2012	RCT	18 (12/6)	18	3.6±1.07	Arabia	Test (DFDBA+ABG)	18	18	3.7±1.07	2.9±1.08	0.1±0.61	3	Calcium Chloride	10% Calcium Chloride gel+ 3000rpm x 15m																	
Pradeep	2012	RCT	54 (27/27)	36.8	9 months	India	Test (DFDBA+PRF)	54	54	3.6±1.19	2.7±1.29	0.2±0.71	1 and 2 (3600rpm x 15m)	Calcium Chloride	10% Calcium Chloride gel+ 3000rpm x 15m																	

NR: Not reported; RCT: Randomized controlled trial; COFD: Conventional open flap debridement; PRP: Platelet rich plasma; CPS: Calcium phosphosilicate; DFDBA: Demineralized Freeze Dried Bone Allograft; ABG: Autologous bone graft; EMD: Enamel Matrix Derivative; HA: Hydroxyapatite; NBM: Natural bone mineral; RPM: Reduction in probing depth; ICIL: Increase in Clinical Insertion Level; RGD: Reduction in Gingival Recession; mm: Millimeters; rpm: Revolutions per minute; m: Minutes; mg: Milligrams; g: Relative centrifugal force.
Figure 2. Risk of bias of the articles.

Figure 3. Forest plot of the event “Reduction of probing depth when using PRP in the treatment of periodontal intrabony defects”.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>PRP Mean (SD)</th>
<th>Control Mean (SD)</th>
<th>Mean difference IV Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1 only PRP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pradeep 2012</td>
<td>3.77 (1.07)</td>
<td>17</td>
<td>2.97 (0.93) 17</td>
<td>2012</td>
</tr>
<tr>
<td>Agarwal 2016</td>
<td>4.86 (2.12)</td>
<td>10</td>
<td>2.69 (1.37) 9</td>
<td>2016</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>27</td>
<td>26</td>
<td>18.0%</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau²=0.55; Chi²=24.2, df=1 (p=0.12); I²=59% Test for overall effect: Z=1.96 (p=0.05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.2 PRP combined with another biomaterial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hassan 2012</td>
<td>4.97 (0.72)</td>
<td>6</td>
<td>4.38 (0.96) 6</td>
<td>2012</td>
</tr>
<tr>
<td>Döri 2013</td>
<td>4.9 (2.03)</td>
<td>12</td>
<td>5 (2.39) 12</td>
<td>2013</td>
</tr>
<tr>
<td>Gupta 2014</td>
<td>3.4 (1.97)</td>
<td>10</td>
<td>1.9 (1.87) 10</td>
<td>2014</td>
</tr>
<tr>
<td>Agarwal 2014</td>
<td>3.65 (0.63)</td>
<td>24</td>
<td>3.65 (0.52) 24</td>
<td>2014</td>
</tr>
<tr>
<td>Khosropanah 2015</td>
<td>4.6 (1.4)</td>
<td>12</td>
<td>4.2 (1.22) 12</td>
<td>2015</td>
</tr>
<tr>
<td>Gamal 2016</td>
<td>4.3 (0.36)</td>
<td>10</td>
<td>3.8 (0.42) 10</td>
<td>2016</td>
</tr>
<tr>
<td>Shukla 2016</td>
<td>3.7 (1)</td>
<td>20</td>
<td>4.05 (1.1) 20</td>
<td>2016</td>
</tr>
<tr>
<td>Agarwal 2016</td>
<td>4.88 (1.12)</td>
<td>9</td>
<td>2.69 (1.37) 9</td>
<td>2016</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>103</td>
<td>103</td>
<td>82.0%</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau²=0.22; Chi²=21.12, df=9 (p=0.004); I²=67% Test for overall effect: Z=1.91 (p=0.056)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>130</td>
<td>129</td>
<td>100.0%</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau²=0.26, Chi²=28.34, df=9 (p=0.0008); I²=68% Test for overall effect: Z=2.68 (p=0.007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: Chi²=1.49, df=1 (p=0.22); I²=32.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION.

Results revealed that the use of PRP in the treatment of PID produced an increase in the clinical insertion level, a reduction in probing depth and a reduction in gingival recession significantly greater than the control treatment. Subgroup analysis showed that all these clinical effects were the same if only PRP was used or if PRP was combined with another biomaterial.

In this study, a random effects model for the meta-analysis was used. It was found that there was no difference if the randomized controlled trial (RCT) had a parallel or cross-over design, since the studies showed positive clinical effects for the use of PRP in the treatment of PID. This is similar to the findings reported by Smail et al. 34
who performed a meta-epidemiological study that did not provide sufficient evidence for the systematic differences in estimates of the effect of interventions between split-mouth and parallel-arm RCTs for continuous or binary data. In contrast, Hou et al.,\(^2\) stated that different study designs are not equally effective in assessing the clinical efficacy of PRP.

In relation to the use of PRP in the reduction of gingival recessions, there are conflicting results. Del Fabbro et al.,\(^20\) and Gao et al.,\(^11\) suggest that PRP does not produce significant results in gingival recessions. However, Fu et al.,\(^35\) report that the systematic review and meta-analysis performed by Del Fabbro et al.,\(^20\) contained a significant number of inconsistencies and therefore determined that their level of evidence was 2. The same observations are applicable for Gao et al.\(^21\) For this reason, one of the strengths of this review is to have taken into account the suggestions of Fu et al.,\(^35\) for higher reliability results.

However, the present review also has limitations. Some RCTs with a high risk of bias were included. In addition, there is variability in obtaining PRP due to the different protocols currently in existence and to the different commercially available systems.

Despite these limitations, more than half of the studies showed a low risk of bias. Consequently, the results obtained from this systematic review and meta-analysis are reliable. The conclusions and the results of the systematic reviews that have been carried out on this topic,\(^2,14,20,21,36\) confirm that using PRP produces a positive clinical effect in the treatment of PID, such reviews covered RCTs published in years prior to those included in this study.

However, these results cannot be generalized due to two reasons. First, most RCTs compared in all systematic reviews had high heterogeneity. Second, all RCTs are from European and Asian countries, but each continent and country has its own culture and type of food. These factors can significantly influence the PRP preparation and its clinical effects. It is recommended to carry out well-designed RCTs dealing with this issue in other countries.

CONCLUSION.

The clinical effect of PRP in the treatment of PID is positive used either alone or in combination with another biomaterial. This clinical effect was significant in reducing probing depth, reducing gingival recession and increasing clinical insertion level, regardless of whether the RCT has a parallel or cross-over design.

REFERENCES.

15. Amable PR, Carías RB, Teixeira MV, da Cruz Pacheco I, Corrêa do Amaral RJ, Granjeiro JM, Borojvic R. Platelet-rich plasma pre-