Synthesis, characterization, and evaluation of nano-hydroxyapatite based experimental calcium silicate cement as a root repair material.

  • Simin Sharifi Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. http://orcid.org/0000-0002-3020-3779
  • Solmaz Maleki-Dizaj Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. http://orcid.org/0000-0003-4759-7222
  • Shahriar Shahi Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. | Departnent of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran. http://orcid.org/0000-0003-4616-5145
  • Mahsa Mahdilouy Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. | Departnent of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.

Abstract

Introduction: This study aimed to prepare a new root repair material including Portland cement, bismuth oxide, and nano-hydroxyapatite and analyze its physicochemical properties and its effects on the proliferation and differentiation of human dental pulp stem cells (hDPSCs).
Material and Methods: Bismuth oxide as a radiopaque component and nano-hydroxyapatite particles were added to white Portland cement at 20% and 5% weight ratio, respectively. Characterization of the prepared cement was done using con-ventional methods. To examine the bioactivity of this new material, atomic absorption spectroscopy (AAS) was used for the investigation of the rate of calcium ions dissolution in simulated body fluid media. The viability of hDPSCs was assessed by an MTT assay after 1, 3 and 7 days. The odontogenic potential of this substance was evaluated by measuring alkaline phosphatase activity and alizarin red S staining.
Results: Based on the bioactivity results, the cement presented high bio-activity, corroborating sufficiently with the calcium release patterns. The cell viability was significantly increased in new root repair ma-terial containing hydroxyapatite nanoparticles after 3 and 7 days (p<0.05).
Conclusion: Moreover, alkaline phosphatase activity increased over 7 days in all experimental groups. The new cement containing nano-hydroxyapatite particles could be a good root repair material.

Author Biographies

Simin Sharifi, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
 
Solmaz Maleki-Dizaj, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
 
Shahriar Shahi, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. | Departnent of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.
 

References

[1]. Sun Q, Gustin JW, Tian FC, Sidow SJ, Bergeron BE, Ma JZ, Tay FR. Effects of pre-mixed hydraulic calcium silicate putties on osteogenic differentiation of human dental pulp stem cells in vitro. J Dent. 2021;108:103653. doi: 10.1016/j.jdent.2021.103653. PMID: 33798641.

[2]. Epple M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta biomaterialia. 2018; 77: 1-14.

[3]. Elkassas D, Arafa A. The innovative applications of therapeutic nanostructures in dentistry. Nanomedicine: Nanotechnology, Biology and Medicine. 2017; 13(4): 1543-62.

[4]. Kim MY, Kwon HK, Choi CH, Kim BI. Combined effects of nano-hydroxyapatite and NaF on remineralization of early caries lesion. Key Engineering Materials. 2007; 330-332 (II):1347-50. doi.org/10.4028/0-87849-422-7.1347

[5]. Li L, Pan H, Tao J, Xu X, Caiyun Mao C, Gub X, Tang R. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J Mater Chem. 2008;18(34): 4079-84

[6]. Barot T, Rawtani D, Kulkarni P. Nanotechnology-based materials as emerging trends for dental applications. Rev Adv Mater Sci. 2021; 60:173–89

[7]. Maleki Dizaj S, Barzegar-Jalali M, Zarrintan MH, Adibkia K, Lotfipour F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin Drug Deliv. 2015;12(10):1649-60. doi: 10.1517/17425247.2015.10 49530. PMID: 26005036.

[8]. Wongkornchaowalit N, Lertchirakarn V. Setting time and flowability of accelerated Portland cement mixed with polycarboxylate superplasticizer. J Endod. 2011;37(3):387-9. doi: 10.1016/j.joen.2010.11.039. PMID: 21329827.

[9]. Chang SW, Lee SY, Ann HJ, Kum KY, Kim EC. Effects of calcium silicate endodontic cements on biocompatibility and mineralization-inducing potentials in human dental pulp cells. J Endod. 2014;40(8):1194-200. doi: 10.1016/j.joen.2014.01.001. PMID: 25069932.

[10]. Ahmadian E, Shahi S, Yazdani J, Maleki Dizaj S, Sharifi S. Local treatment of the dental caries using nanomaterials. Biomed Pharmacother. 2018;108:443-447. doi: 10.1016/j.biopha.2018.09.026. PMID: 30241047.

[11]. Rahimi S, Salarinasab S, Ghasemi N, Rahbarghazi R, Shahi S, Salem Milani A, Divband B, Davoudi P. In vitro induction of odontogenic activity of human dental pulp stem cells by white Portland cement enriched with zirconium oxide and zinc oxide components. J Dent Res Dent Clin Dent Prospects. 2019;13(1):3-10. doi: 10.15171/joddd.2019.001. PMID: 31217912; PMCID: PMC6571518.

[12]. Samiei M, Shirazi S, Pournaghi Azar F, Fathifar Z, Ghojazadeh M, Alipour M. “The Effect of Different Mixing Methods on the Properties of Calcium-Enriched Mixture Cement: A Systematic Review of in Vitro Studies”. Iranian Endod J. 2019; 14(4): 240-6. doi:10.22037/iej.v14i4.25126.

[13]. Chang SW, Bae WJ, Yi JK, Lee S, Lee DW, Kum KY, Kim EC. Odontoblastic Differentiation, Inflammatory Response, and Angiogenic Potential of 4 Calcium Silicate-based Cements: Micromega MTA, ProRoot MTA, RetroMTA, and Experimental Calcium Silicate Cement. J Endod. 2015;41(9):1524-9. doi: 10.1016/j.joen.2015.04.018. PMID: 26093472.

[14]. Antonijevi? D, Despotovi? A, Bio?anin V, Miloševi? M, Triši? D, Lazovi? V, Zogovi? N, Milašin J, Ili? D. Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. Ceram Int. 2021; 47(20): 28913-23.

[15]. Holland R, de Souza V, Murata SS, Nery MJ, Bernabé PF, Otoboni Filho JA, Dezan Júnior E. Healing process of dog dental pulp after pulpotomy and pulp covering with mineral trioxide aggregate or Portland cement. Braz Dent J. 2001;12(2):109-13. PMID: 11445912.

[16]. Shahi S, Özcan M, Maleki Dizaj S, Sharifi S, Al-Haj Husain N, Eftekhari A, Ahmadian E. A review on potential toxicity of dental material and screening their biocompatibility. Toxicol Mech Methods. 2019;29(5):368-377. doi: 10.1080/ 15376516.2019.1566424. PMID: 30642212.

[17]. Avranas A, Stalidis G, Ritzoulis G. Demulsification rate and zeta potential of O/W emulsions. Colloid & Polymer Sci. 1988; 266: 937–40. (1988). doi.org/10.1007/BF01410850

[18]. Ersoy B, Sariisik A, Dikmen S, Sariisik G. Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technology. 197;(2010):129–135.

[19]. Yilmaz B. Effects of molecular and electrokinetic properties of pozzolans on hydration. ACI Mat J. 2009; 106(2): 128-137.

[20]. Shahi S, Yavari HR, Rahimi S, Eskandarinezhad M, Shakouei S, Unchi M. Comparison of the sealing ability of mineral trioxide aggregate and Portland cement used as root-end filling materials. J Oral Sci. 2011; 53(4):517-22. doi: 10.2334/josnusd.53.517. PMID: 22167039.

[21]. Coomaraswamy KS, Lumley PJ, Hofmann MP. Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement-based (MTA-like) system. J Endod. 2007; 33(3):295-8. doi: 10.1016/j.joen.2006.11.018. PMID: 17320718.

[22]. Húngaro Duarte MA, de Oliveira El Kadre GD, Vivan RR, Guerreiro Tanomaru JM, Tanomaru Filho M, de Moraes IG. Radiopacity of portland cement associated with different radiopacifying agents. J Endod. 2009; 35(5):737-40. doi: 10.1016/j.joen.2009.02.006. PMID: 1941 0095.

[23]. Bhardwaj A, Bhardwaj A, Misuriya A, Maroli S, Manjula S, Singh AK. Nanotechnology in dentistry: Present and future. J Int Oral Health. 2014; 6(1):121-6. PMID: 24653616; PMCID: PMC3959150.

[24]. Jandt KD, Watts DC. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dent Mater. 2020; 36(11):1365-1378. doi: 10.1016/j.dental.2020.08.006. PMID: 32981749; PMCID: PMC7516471.

[25]. Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol (Roma). 2014; 5(3):108-14. PMID: 25506416; PMCID: PMC4252862.

[26]. Du M, Chen J, Liu K, Xing H, Song C. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Composites Part B: Engineering. 2021; 215 (2021):108790.

[27]. Hernandez EP, Botero TM, Mantellini MG, McDonald NJ, Nör JE. Effect of ProRoot MTA mixed with chlorhexidine on apoptosis and cell cycle of fibroblasts and macrophages in vitro. Int Endod J. 2005; 38(2):137-43. doi: 10.1111/j.1365-2591.2004.00922.x. PMID: 15667636.

[28]. Min KS, Kim HI, Park HJ, Pi SH, Hong CU, Kim EC. Human pulp cells response to Portland cement in vitro. J Endod. 2007;33(2):163-6. doi: 10.1016/j.joen.2006.07.022. PMID: 17258637.

[29]. Rodrigues EM, Cornélio ALG, Mestieri LB, Fuentes ASC, Salles LP, Rossa-Junior C, Faria G, Guerreiro-Tanomaru JM, Tanomaru-Filho M. Human dental pulp cells response to mineral trioxide aggregate (MTA) and MTA Plus: cytotoxicity and gene expression analysis. Int Endod J. 2017;50(8):780-789. doi: 10.1111/iej.12683. PMID: 27520288.

[30]. Kim EC, Lee BC, Chang HS, Lee W, Hong CU, Min KS. Evaluation of the radiopacity and cytotoxicity of Por-tland cements containing bismuth oxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(1):e54-7. doi: 10.1016/j.tripleo.2007.08.001. PMID: 18155604.

[31]. Alipour M, Firouzi N, Aghazadeh Z, Samiei M, Montazersaheb S, Khoshfetrat AB, Aghazadeh M. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. BMC Biotechnol. 2021;21(1):6. doi: 10.1186/s12896-020-00666-3. PMID: 33430842; PMCID: PMC7802203.

[32]. Lee SY, Min KS, Choi GW, Park JH, Park SH, Lee SI, Kim EC. Effects of simvastain and enamel matrix derivative on Portland cement with bismuth oxide-induced growth and odontoblastic differentiation in human dental pulp cells. J Endod. 2012;38(3):405-10. doi: 10.1016/j.joen.2011.12.025. PMID: 22341085.

[33]. Campodoni E, Montanari M, Artusi C, Bassi G, Furlani F, Montesi M, Panseri S, Sandri M, Tampieri A. Calcium-Based Biomineralization: A Smart Approach for the Design of Novel Multifunctional Hybrid Materials J Compos Sci. 2021; 5(10):278. doi.org/10.3390/jcs5100278
Published
2022-02-28
How to Cite
SHARIFI, Simin et al. Synthesis, characterization, and evaluation of nano-hydroxyapatite based experimental calcium silicate cement as a root repair material.. Journal of Oral Research, [S.l.], v. 11, n. 1, p. 1-13, feb. 2022. ISSN 0719-2479. Available at: <https://www.joralres.com/index.php/JOralRes/article/view/joralres.2022.007>. Date accessed: 19 apr. 2024. doi: https://doi.org/10.17126/joralres.2022.007.