Effects of ambient oxygen pressure on orthodontic tooth movement.

  • Victor Chumpitaz-Cerrate Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú.  Laboratorio de Farmacología, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú. http://orcid.org/0000-0001-7073-8076
  • Lesly Chavez-Rimache Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. http://orcid.org/0000-0001-9987-7475
  • Elías Aguirre-Siancas Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. Laboratorio de Farmacología, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú. Laboratorio de Embriología e Histología, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú. http://orcid.org/0000-0003-4713-5511
  • César Franco-Quino Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. Laboratorio de Farmacología, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú. http://orcid.org/0000-0003-1773-3019
  • Eliberto Ruiz-Ramirez Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú.  Laboratorio de Farmacología, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú. http://orcid.org/0000-0002-5340-7168
  • Victoria Caldas-Cueva Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor  de San Marcos, Lima, Perú. Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor  de San Marcos, Lima, Perú.  http://orcid.org/0000-0003-2048-7779

Abstract

Objective: To evaluate the effects of variation in ambient oxygen pressure on orthodontic tooth movement in guinea pigs. Material and Methods: Seventy-two guinea pigs randomly distributed into two groups (A and B) were evaluated in the study. All specimens were fitted with orthodontic appliances to distalize maxillary incisors. Group A was controlled under conditions of oxygen pressures at sea level (150 masl, 157 mm Hg) and Group B under conditions of oxygen pressures at altitude (3405 masl, 107 mm Hg). The clinical (distance between the distal-incisal angles of the maxillary incisors), biochemical (serum alkaline phosphatase), and histopathological characteristics (osteoblast and osteocyte count) were evaluated before placing the orthodontic devices and after 24 and 72 hours. Results: In the clinical evaluation, the distance between the distal-incisal angles of the maxillary incisors, on day one and three, was significantly higher in group B compared to group A (p=0.002 and p=0.001, respectively). In the biochemical evaluation, the level of serum alkaline phosphatase on the first and third days was significantly higher in group B compared to group A (p=0.001 and p=0.001, respectively). In the histopathological evaluation, the osteoblasts and osteocytes count on day one and three was significantly higher in group B compared to group A (p<0.05). Conclusion: Oxygen pressure at high altitude positively influenced orthodontic tooth movement in guinea pigs, improving its clinical, biochemical, and histopathological characteristics.

Author Biographies

Victor Chumpitaz-Cerrate, Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú.  Laboratorio de Farmacología, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú.
 
Lesly Chavez-Rimache, Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú.
 
Elías Aguirre-Siancas, Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. Laboratorio de Farmacología, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú. Laboratorio de Embriología e Histología, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú.
 
César Franco-Quino, Grupo de Investigación en Ciencias Básicas Estomatológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú. Laboratorio de Farmacología, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú.
 

References

[1]. Makrygiannakis MA, Kaklamanos EG, Athanasiou AE. Medication and orthodontic tooth movement. J Orthod. 2019 Jun; 46(1_suppl):39-44. doi: 10.1177/1465312519840037. PMID: 31056026.

[2]. Sokos D, Everts V, de Vries TJ. Role of periodontal ligament fibroblasts in osteoclastogenesis: a review. J Periodontal Res. 2015 Apr;50(2):152-9. doi: 10.1111/jre.12197. PMID: 24862732.

[3]. Lindauer SJ and Britto D. Biological response to biome-chanical signals: Orthodontic mechanics to control tooth movement. Seminars in Orthodontics. 2000;6(3):145-154.

[4]. Kitase Y, Yokozeki M, Fujihara S, Izawa T, Kuroda S, Tanimoto K, Moriyama K, Tanaka E. Analysis of gene expression profiles in human periodontal ligament cells under hypoxia: the protective effect of CC chemokine ligand 2 to oxygen shortage. Arch Oral Biol. 2009 Jul;54(7):618-24. doi: 10.1016/j.archoralbio.2009.03.010. PMID: 19406381.

[5]. Huang H, Yang R, Zhou YH. Mechanobiology of Periodontal Ligament Stem Cells in Orthodontic Tooth Movement. Stem Cells Int. 2018 Sep 17;2018:6531216. doi: 10.1155/2018/6531216. PMID: 30305820; PMCID: PMC6166363.

[6]. Li Y, Jacox LA, Little SH, Ko CC. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci. 2018 Apr;34(4):207-214. doi: 10.1016/j.kjms.2018.01.007. PMID: 29655409.

[7]. Mingyuan X, Qianqian P, Shengquan X, Chenyi Y, Rui L, Yichen S, Jinghong X. Hypoxia-inducible factor-1α activates transforming growth factor-β1/Smad signaling and increases collagen deposition in dermal fibroblasts. Oncotarget. 2017 Dec 14;9(3):3188-3197. doi: 10.18632/oncotarget.23225. PMID: 29423039; PMCID: PMC5790456.

[8]. Alarcón JA, Linde D, Barbieri G, Solano P, Caba O, Rios-Lugo MJ, Sanz M, Martin C. Calcitonin gingival crevicular fluid levels and pain discomfort during early orthodontic tooth movement in young patients. Arch Oral Biol. 2013 Jun;58(6):590-5. doi: 10.1016/j.archoralbio.2012.10.002. PMID: 23107048.

[9]. Li ML, Yi J, Yang Y, Zhang X, Zheng W, Li Y, Zhao Z. Compression and hypoxia play independent roles while having combinative effects in the osteoclastogenesis induced by periodontal ligament cells. Angle Orthod. 2016 Jan;86(1):66-73. doi: 10.2319/121414.1. PMID: 25844508; PMCID: PMC8603963.

[10]. Asociación Médica Mundial. Declaración de la AMM sobre el uso de animales en Investigación Biomédica. 2016. Available at: https://www.wma.net/es/policies-post/declaracion-de-la-amm-sobre-el-uso-de-animales-en-la-investigacion-biomedica/

[11]. Comité Institucional de Cuidado de Uso de Animales (CICUA). 2017. Available at: https://www.uchile.cl/portal/investigacion/152120/comite-institucional-de-cuidado-y-uso-de-animales-cicua

[12]. Yabumoto T, Miyazawa K, Tabuchi M, Shoji S, Tanaka M, Kadota M, Yoshizako M, Kawatani M, Osada H, Maeda H, Goto S. Stabilization of tooth movement by administration of reveromycin A to osteoprotegerin-deficient knockout mice. Am J Orthod Dentofacial Orthop. 2013 Sep;144(3):368-80. doi: 10.1016/j.ajodo.2013.04.016. PMID: 23992809.

[13]. Yellowley CE, Genetos DC. Hypoxia Signaling in the Skeleton: Implications for Bone Health. Curr Osteoporos Rep. 2019 Feb;17(1):26-35. doi: 10.1007/s11914-019-00500-6. PMID: 30725321; PMCID: PMC6653634.

[14]. Inagaki Y, Akahane M, Shimizu T, Inoue K, Egawa T, Kira T, Ogawa M, Kawate K, Tanaka Y. Modifying oxygen tension affects bone marrow stromal cell osteogenesis for regenerative medicine. World J Stem Cells. 2017 Jul 26;9(7):98-106. doi: 10.4252/wjsc.v9.i7.98. PMID: 28785381; PMCID: PMC55293 17.

[15]. Chumpitaz-Cerrate V, Chavez-Rimache L, Franco-Quino C, Aguirre-Siancas E, Caldas-Cueva V & Ruíz-Ramírez E. Effects of NSAIDs and environmental oxygen pressure on bone regeneration. J Oral Res.2019; 8(2):152-158. https://doi.org/10.17126/joralres.2019.020.

[16]. Zhang X, Chen D, Zheng J, Deng L, Chen Z, Ling J, Wu L. Effect of microRNA-21 on hypoxia-inducible factor-1α in orthodontic tooth movement and human periodontal ligament cells under hypoxia. Exp Ther Med. 2019 Apr;17(4):2830-2836. doi: 10.3892/etm.2019.7248. PMID: 30930976; PMCID: PMC6425288.

[17]. Zhang Y, Zhang H, Zhang B, Ling Y, Zhang H. Identification of key HIF-1α target genes that regulate adaptation to hypoxic conditions in Tibetan chicken embryos. Gene. 2020 Mar 1;729:144321. doi: 10.1016/j.gene.2019.144321. PMID: 31
887331.

[18]. Wei F, Yang S, Xu H, Guo Q, Li Q, Hu L, Liu D, Wang C. Expression and Function of Hypoxia Inducible Factor-1α and Vascular Endothelial Growth Factor in Pulp Tissue of Teeth under Orthodontic Movement. Mediators Inflamm. 2015;2015:215761. doi: 10.1155/2015/215761. PMID: 2644
1483; PMCID: PMC4579319.

[19]. Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR, Bouxsein ML, Faugere MC, Guldberg RE, Gerstenfeld LC, Haase VH, Johnson RS, Schipani E, Clemens TL. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007 Jun;117(6):1616-26. doi: 10.1172/JCI31581. PMID: 17549257; PMCID: PMC1878533.

[20]. Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Bouillon R, Carmeliet G. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev. 2002 Feb;111(1-2):61-73. doi: 10.1016/s0925-4773(01)00601-3. PMID: 11804779.

[21]. Murshid SA. The role of osteocytes during experimental orthodontic tooth movement: A review. Arch Oral Biol. 2017 Jan;73:25-33. doi: 10.1016/j.archoralbio.2016.09.001. PMID: 27653146.

[22]. Lerner U.H. Osteoblasts, Osteoclasts, and Osteocytes: Unveiling Their Intimate-Associated Responses to Applied Orthodontic Forces. Seminars in Orthodontics. 2012; 18(4): 237-248. http://dx.doi.org/10.1053/j.sodo.2012.06.002.

[23]. Yu H, Yu W, Liu Y, Yuan X, Yuan R, Guo Q. Expression of HIF 1α in cycling stretch induced osteogenic differentiation of bone mesenchymal stem cells. Mol Med Rep. 2019 Nov;20(5):4489-4498. doi: 10.3892/mmr.2019.10715.PMID:
31702030; PMCID: PMC6797986.

[24]. Niklas A, Proff P, Gosau M, Römer P. The role of hypoxia in orthodontic tooth movement. Int J Dent. 2013;2013:841840. doi: 10.1155/2013/841840. PMID: 24228034; PMCID: PMC 3818850.

[25]. Sun J, Du J, Feng W, Lu B, Liu H, Guo J, Amizuka N, Li M. Histological evidence that metformin reverses the adverse effects of diabetes on orthodontic tooth movement in rats. J Mol Histol. 2017 Apr;48(2):73-81. doi: 10.1007/s10735-016-9707-y. PMID: 27981392.

[26]. Pujari-Palmer M, Pujari-Palmer S, Lu X, Lind T, Melhus H, Engstrand T, Karlsson-Ott M, Engqvist H. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts. PLoS One. 2016 Oct 4;11(10):e0163530. doi: 10.1371/journal.pone.0163530. PMID: 27701417; PMCID: PMC5049792.

[27]. Huang J, Deng F, Wang L, Xiang XR, Zhou WW, Hu N, Xu L. Hypoxia induces osteogenesis-related activities and expression of core binding factor α1 in mesenchymal stem cells. Tohoku J Exp Med. 2011 May;224(1):7-12. doi: 10.1620/tjem.224.7. PMID: 21498965.

[28]. Sha Y, Lv Y, Xu Z, Yang L, Hao X, Afandi R. MGF E peptide pretreatment improves the proliferation and osteogenic differentiation of BMSCs via MEK-ERK1/2 and PI3K-Akt pathway under severe hypoxia. Life Sci. 2017 Nov 15;189:52-62. doi: 10.1016/j.lfs.2017.09.017. Epub 2017 Sep 18. PMID: 28927682.

[29]. Nizet A, Cavalier E, Stenvinkel P, Haarhaus M, Magnusson P. Bone alkaline phosphatase: an important biomarker in chronic kidney disease – mineral and bone disorder. Clinica Chimica Acta. 2019. doi: https://doi.org/10.1016/j.cca.2019.11.012

[30]. Vimalraj S. Alkaline Phosphatase: Structure, Expression and its Function in Bone Mineralization. Gene. 2020; 754: 1-8. doi: https://doi.org/10.1016/j.gene.2020.144855
Published
2021-12-31
How to Cite
CHUMPITAZ-CERRATE, Victor et al. Effects of ambient oxygen pressure on orthodontic tooth movement.. Journal of Oral Research, [S.l.], v. 10, n. 6, p. 1-11, dec. 2021. ISSN 0719-2479. Available at: <https://www.joralres.com/index.php/JOralRes/article/view/joralres.2021.077>. Date accessed: 16 apr. 2024. doi: https://doi.org/10.17126/joralres.2021.077.
Section
Articles