Biological and physico-mechanical properties of poly(methyl methacrylate) enriched with graphene oxide as a potential biomaterial.

  • René García-Contreras Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México (UNAM), León, Gto., México; Osforma, Los Algodones, B.C., México. http://orcid.org/0000-0003-3504-5519
  • Héctor Guzmán-Juárez Osforma, Los Algodones, B.C., México
  • Daniel López-Ramos TPD Práctica privada.
  • Carlos Alvarez-Gayosso Osforma, Los Algodones, B.C., México; DEPEI-UNAM, Laboratorio Materiales Dentales, Cd. México, México. http://orcid.org/0000-0002-9585-8776

Abstract

Objective: To determine the cytotoxicity and effects of graphene oxide (GO) on cellular proliferation of gingival-fibroblasts, pulpdental cells and human osteoblasts in culture, and to determine the physical, mechanical and biological properties of poly (methyl methacrylate) (PMMA) enriched with GO. Material and Methods: T he G O w as c haracterized with SEM. Cytotoxicity and cell proliferation were determined by the MTT bioassay. The physical-mechanical tests (flexural strength and elastic  modulus) were carried out with a universal testing machine. Sorption and solubility were determined by weighing before and after drying and immersion in water. Porosity was evaluated by visual inspection. Data were analyzed with Student's t-test and Tukey's post-hoc ANOVA. Results: The GO has a heterogeneous morphology and a particle size of 66.67±64.76 μm. GO has a slight to no-cytotoxicity (>50-75% viability) at 1-30 days, and at 24 hours incubation of PMMA with GO significantly stimulates osteoblasts (45±8%, p<0.01). The physical and mechanical properties of PMMA with GO increase considerably without altering sorption, solubility and porosity. Conclusion: GO alone or with PMMA has an acceptable biocompatibility, could contribute to cell proliferation, cell regeneration and improve the physical-mechanical properties of PMMA.

References

1. Rodríguez-Lozano FJ, García-Bernal D, Aznar-Cervantes S, Ros-Roca MA, Algueró MC, Atucha NM, Lozano-Garcí A, Moraleda JM, Cenis JL. Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells. J Mater Sci Mater Med. 2014; 25(12): 2731–41.
2. Kim J, Choi KS, Kim Y, Lim KT, Seonwoo H, Park Y, Kim DH, Choung PH, Cho CS, Kim SY, Choung YH, Chung JH. Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells. J Biomed Mater Res A. 2013;101(12):3520-30.
3. Tahriri M, Del Monico M, Moghanian A, Tavakkoli Yaraki M, Torres R, Yadegari A, Tayebi L. Graphene and its derivatives: Opportunities and challenges in dentistry. Mater Sci Eng C Mater Biol Appl. 2019;102:171-85
4. Rosa V, Xie H, Dubey N, Madanagopal TT, Rajan SS, Morin JL, Islam I, Castro Neto AH. Graphene oxide-based substrate: physical and surface characterization, cyto-compatibility and differentiation potential of dental pulp stem cells. Dent Mater. 2016;32(8):1019-25.
5. Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH. Biomedical applications of graphene and graphene oxide. Acc Chem Res. 2013; 46(10): 2211–24.
6. Dubey N, Bentini R, Islam I, Cao T, Castro Neto AH, Rosa V. Graphene: A Versatile Carbon-Based Material for Bone Tissue Engineering. Stem Cells Int. 2015: 804213; 18–23.
7. Drahansky M, Paridah M, Moradbak A, Mohamed A, Owolabi F abdulwahab taiwo, Asniza M, et al. Synthesis and Biomedical Applications of Graphene: Present and Future Trends. Intech 2016; 13.
8. Torres del Castillo MA. Potencial de la adición de nanofibras de grafeno en la resistencia mecánica de resinas autopolimerizables para aplicaciones en implanto-prótesis. [Tesis]. Departamento de Ciencias de la Salud. Facultad de Ciencias de la Salud. Universidad Católica de Murcia,2016.
9. Zhang Y, Nayak TR, Hong H, Cai W. Graphene: A versatile nanoplatform for biomedical applications. Nanoscale. 2012; 4(13): 3833–42.
10. Ordaz-Trinidad N, Dorantes-Álvarez L, Salas-Benito, J, Barrón-Romero BL, Salas-Benito M, Nova-Ocampo M De. Cytotoxicity and antiviral activity of pepper extracts (Capsicum spp). Polibotánica. 2018; 46: 273–85.
11. Malta AF de O, Cortez DL, Romão DA, Pereira JECH, Velo MM de AC, Nascimento TR de L. Graphene Oxide Applications in Dentistry: Integrative Literature Review. J Heal Sci. 2019; 21(4): 376.
12. Nizami MZI, Takashiba S, Nishina Y. Graphene oxide: A new direction in dentistry. Appl Mater Today. 2020; 19: 100576.
13. Kalbacova M, Antonin Broz, Jing Kong, Martin Kalbac. Graphene substrates promote adherence of human oste-oblasts and mesenchymal stromal cells. Carbon. 2010; 48: 4323–9
14. Olteanu D, Filip A, Socaci C, Biris AR, Filip X, Coros M, Rosu MC, Pogacean F, Alb C, Baldea I, Bolfa P, Pruneanu S. Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells. Colloids Surf B Biointerfaces. 2015;136:791-8.
15. García Pellicer AJ. Comportamiento mecánico y caracterización de resinas autopolimerizables aditivadas con nanofibras de grafeno para el refuerzo implantoprotético de prótesis híbridas. 2016, Escuela Internacional de Doctorado. Universidad Católica de Murcia.
16. Xie H, Cao T, Rodríguez-Lozano FJ, Luong-Van EK, Rosa V. Graphene for the development of the next-generation of biocomposites for dental and medical applications. Dent Mater. 2017; 33(7): 765–74.
17. Jung-Hwan Lee, Jeong-Ki Jo, Dong-Ae Kim, Kapil Dev Patel, Hae-Won Kima, Hae-Hyoung Lee. Graphene and its derivatives: Opportunities and challenges in dentistry. Dental Materials. 2018; 34: e63–e72.
Published
2021-04-30
How to Cite
GARCÍA-CONTRERAS, René et al. Biological and physico-mechanical properties of poly(methyl methacrylate) enriched with graphene oxide as a potential biomaterial.. Journal of Oral Research, [S.l.], v. 10, n. 2, p. 1-9, apr. 2021. ISSN 0719-2479. Available at: <https://www.joralres.com/index.php/JOralRes/article/view/joralres.2021.019>. Date accessed: 29 mar. 2024. doi: https://doi.org/10.17126/joralres.2021.019.
Section
Articles