Use of cone beam computed tomography, a desktop 3D printer and freeware for manufacturing craniofacial bone prostheses: a pilot study.

  • Danny Gutiérrez-López Facultad de Odontología de la Universidad Católica de Santa María, Arequipa, Perú.
  • Carlos Ortiz-Márquez. Facultad de Odontología de la Universidad Católica de Santa María, Arequipa, Perú.
  • Moraes Cicero Equipo Brasilero de Antropología y Odontología Forense, Brasil.
  • Gustavo Obando-Pereda Facultad de Odontología de la Universidad Católica de Santa María, Arequipa, Perú.

Abstract

The aim of this study was to reconstruct missing bone parts using cone beam computed tomography (CBCT), freeware and a desktop 3D printer. Materials and Methods: A human skull was used and osteotomies were performed in the frontal process of the zygomatic bone, zygomatic process of the temporal bone and part of the parietal bone. The 3D image was then obtained CBCT and the DICOM file was transformed into STL and exported using InVesalius software. Missing bone parts were modeled by overlapping with OrtogOnBlender software for later printing using a desktop 3D printer. Result: The obtained prostheses had very good adaptation to the missing bone parts. Conclusion: It is feasible to make bone prostheses by 3D printing using low-cost desktop printers, as well as the use of free open-source software programs through CBCT.

References

1. Ruiz-Huerta L, Almanza-Arjona YC, Caballero-Ruiz A, Castro-Espinosa HA, Díaz-Aguirre CM, Echevarría Y Pérez E. CAD and AM-fabricated moulds for fast cranio-maxillofacial implants manufacture. Rapid Prototyping Journal. 2016;22(1):31-9.
2. Zirkle LG, Jr. Injuries in developing countries--how can we help? The role of orthopaedic surgeons. Clin Orthop Relat Res. 2008;466(10):2443-50.
3. Wester K. Keep it simple and cheap! World Neurosurg. 2013;79(1):58-9.
4. Abdo Filho RC, Oliveira TM, Lourenco Neto N, Gurgel C, Abdo RC. Reconstruction of bony facial contour deficiencies with polymethylmethacrylate implants: case report. J Appl Oral Sci. 2011;19(4):426-30.
5. Akan M, Karaca M, Eker G, Karanfil H, Akoz T. Is polymethylmethacrylate reliable and practical in full-thickness cranial defect reconstructions? J Craniofac Surg. 2011;22(4):1236-9.
6. Ganry L, Hersant B, Quilichini J, Leyder P, Meningaud JP. Use of the 3D surgical modelling technique with open-source software for mandibular fibula free flap reconstruction and its surgical guides. J Stomatol Oral Maxillofac Surg. 2017;118(3):197-202.
7. Ganry L, Hersant B, Bosc R, Leyder P, Quilichini J, Meningaud JP. Study of medical education in 3D surgical modeling by surgeons with free open-source software: Example of mandibular reconstruction with fibula free flap and creation of its surgical guides. J Stomatol Oral Maxillofac Surg. 2018;119(4):262-7.
8. Morales-Gomez JA, Garcia-Estrada E, Leos-Bortoni JE, Delgado-Brito M, Flores-Huerta LE, De La Cruz-Arriaga AA, et al. Cranioplasty with a low-cost customized polymethylmethacrylate implant using a desktop 3D printer. J Neurosurg. 2018:1-7.
9. Tan ET, Ling JM, Dinesh SK. The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer. J Neurosurg. 2016;124(5):1531-7.
10. Unterhofer C, Wipplinger C, Verius M, Recheis W, Thome C, Ortler M. Reconstruction of large cranial defects with poly-methyl-methacrylate (PMMA) using a rapid prototyping model and a new technique for intraoperative implant modeling. Neurol Neurochir Pol. 2017;51(3):214-20.
11. De La Pena A, De La Pena-Brambila J, Perez-De La Torre J, Ochoa M, Gallardo GJ. Low-cost customized cranioplasty using a 3D digital printing model: a case report. 3D Print Med. 2018;4(1):4.
12. Maricevich J, Cezar-Junior AB, de Oliveira-Junior EX, Veras ESJAM, da Silva JVL, Nunes AA, et al. Functional and aesthetic evaluation after cranial reconstruction with polymethyl methacrylate prostheses using low-cost 3D printing templates in patients with cranial defects secondary to decompressive craniectomies: A prospective study. Surg Neurol Int. 2019;10:1.
13. Huang GJ, Zhong S, Susarla SM, Swanson EW, Huang J, Gordon CR. Craniofacial reconstruction with poly(methyl methacrylate) customized cranial implants. J Craniofac Surg. 2015;26(1):64-70.
14. Manrique OJ, Lalezarzadeh F, Dayan E, Shin J, Buchbinder D, Smith M. Craniofacial reconstruction using patient-specific implants polyether ether ketone with computer-assisted planning. J Craniofac Surg. 2015;26(3):663-6.
15. O'Reilly EB, Barnett S, Madden C, Welch B, Mickey B, Rozen S. Computed-tomography modeled polyether ether ketone (PEEK) implants in revision cranioplasty. J Plast Reconstr Aesthet Surg. 2015;68(3):329-38.
16. Kim BJ, Hong KS, Park KJ, Park DH, Chung YG, Kang SH. Customized cranioplasty implants using three-dimensional printers and polymethyl-methacrylate casting. J Korean Neurosurg Soc. 2012;52(6):541-6.
17. Lethaus B, Bloebaum M, Koper D, Poort-Ter Laak M, Kessler P. Interval cranioplasty with patient-specific implants and autogenous bone grafts--success and cost analysis. J Craniomaxillofac Surg. 2014;42(8):1948-51.
18. Staffa G, Nataloni A, Compagnone C, Servadei F. Custom made cranioplasty prostheses in porous hydroxy-apatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochir. 2007;149(2):161-70.
19. Material Data Sheet, Dental SG. Biocompatible Photo-polymer Resin for Form 2. Formlabs.2016.
Published
2020-04-30
How to Cite
GUTIÉRREZ-LÓPEZ, Danny et al. Use of cone beam computed tomography, a desktop 3D printer and freeware for manufacturing craniofacial bone prostheses: a pilot study.. Journal of Oral Research, [S.l.], v. 9, n. 2, p. 116-120, apr. 2020. ISSN 0719-2479. Available at: <https://www.joralres.com/index.php/JOralRes/article/view/joralres.2020.017>. Date accessed: 25 apr. 2024. doi: https://doi.org/10.17126/joralres.2020.017.
Section
Articles