Osteogenic potential of different chalcones in an in vivo model: A preliminary study.

  • Xana Raquel Ortolan Laboratory of Histology, University of Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina.
  • Telmo José Mezadri Laboratory of Histology, University of Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina.
  • David Rivero Tames Laboratory of Histology, University of Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina.
  • Rogério Corrêa Department of Chemistry, Chemical-Pharmaceutical Investigations Center (NIQFAR)/CCS, University of Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina.
  • Fátima Campos-Buzzi Department of Chemistry, Chemical-Pharmaceutical Investigations Center (NIQFAR)/CCS, University of Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina.

Abstract

Aim. To evaluate the osteogenic potential of chalcones using the rat critical size calvarial defect. Methods. The chalcones were synthesized from acetophenone following the Claisen-Schmidt aldol condensation method by varying the substituted benzaldehydes (3,4-Cl; 4-Cl; 4-CH3; 4-OCH3, H). The five chalcone molecules were evaluated in three concentrations (1%, 5% and 10%) in comparison to control and vehicle (Vaseline) groups. The results of the remaining wound areas were calculated statistically by the ANOVA method followed by the Student - Newman - Keuls test and the histological sections were analyzed qualitatively in by light microscopy. Results. All molecules at 10% concentration showed significant bone closure compared to the control, vehicle and chalcone groups at 1% concentration (p<0.01). Active osteoblasts were observed on the repair surfaces in all groups treated with chalcones. Treatment with the C5 molecule at concentration of 10% resulted in greater bone neoformation compared to the other molecules, with features of secondary bone observed. Conclusion. The chalcones evidenced a dose-dependent osteogenic potential and C5 was more effective in bone repair.

References

1. Riso N, Ferrari T, Ciarlini L, Louzada M. Laser terapêutico no reparo ósseo de ratos submetidos à ausência de carga. Vet Zoo. 2010;17(2):250–8.
2. Garcia VG, Sahyon AS, Longo M, Fernandes LA, Gualberto Junior EC, Novaes VC, Ervolino E, de Almeida JM, Theodoro LH. Effect of LLLT on autogenous bone grafts in the repair of critical size defects in the calvaria of immunosuppressed rats. J Craniomaxillofac Surg. 2014;42(7):1196–202.
3. Toker H, Ozdemir H, Ozer H, Eren K. Alendronate enhances osseous healing in a rat calvarial defect model. Arch Oral Biol. 2012;57(11):1545–50.
4. Pagnoncelli RM, Gerzson AS, Camilotti RS, Jasper J, Böing F. Hormônio do crescimento humano e a perspectiva futura em Odontologia. RFO, Passo Fundo. 2014;19(3):379–83.
5. Fishman JA, Scobie L, Takeuchi Y. Xenotransplantation-associated infectious risk: a WHO consultation. Xenotransplantation. 2012;19(2):72–81.
6. Zwitser EW, Jiya TU, George Licher H, van Royen BJ. Design and management of an orthopaedic bone bank in The Netherlands. Cell Tissue Bank. 2012;13(1):63–9.
7. Fischer J, Kolk A, Wolfart S, Pautke C, Warnke PH, Plank C, Smeets R. Future of local bone regeneration - Protein versus gene therapy. J Craniomaxillofac Surg. 2011;39(1):54–64.
8. Cechinel Filho V, de Campos F, Corrêa R, Yunes RA, Nunes RJ. Aspectos químicos e potencial terapêutico de imidas cíclicas: uma revisão da literatura. Quím Nova. 2003;26(2):230–41.
9. Chavan BB, Gadekar AS, Mehta PP, Vawhal PK, Kolsure AK, Chabukswar AR. Synthesis and Medicinal Significance of Chalcones- A Review. AJBPS. 2016;6(56):1–7.
10. Bozic DD, Milenkovic M, Ivkovic B, Cirkovic I. Newly-synthesized chalcones-inhibition of adherence and biofilm formation of methicillin-resistant Staphylococcus aureus. Braz J Microbiol. 2014;45(1):263–70.
11. Gutierrez RMP, Muniz-Ramirez A, Sauceda JV. Review: The potential of chalcones as a source of drugs. African Journal of Pharmacy and Pharmacology. 2015; 9(8): 237-257. Afr J Pharm Pharmacol. 2015;9(8):237–57.
12. Tabassum N, Hamdani M. Plants used to treat skin diseases. Pharmacogn Rev. 2014;8(15):52–60.
13. Mezadri TJ, Tames DR, Reis RKT, Ortolan XR. Morphophisiological Evaluation of a Kind of Propolis in Tissue Repair in Diabetic Rats. Lat Am J Pharm. 2012;31(5):777–81.
14. Manoj GS, Murugan K. Wound healing activity of methanolic and aqueous extracts of Plagiochila beddomei Steph. thallus in rat model. Indian J Exp Biol. 2012;50(8):551–8.
15. Kim SN, Bae SJ, Kwak HB, Min YK, Jung SH, Kim CH, Kim SH. In vitro and in vivo osteogenic activity of licochalcone A. Amino Acids. 2012;42(4):1455–65.
16. Ortolan XR, Fenner BP, Mezadri TJ, Tames DR, Corrêa R, de Campos Buzzi F. Osteogenic potential of a chalcone in a critical-size defect in rat calvaria bone. J Craniomaxillofac Surg. 2014;42(5):520–4.
17. Mankani MH, Kuznetsov SA, Wolfe RM, Marshall GW, Robey PG. In vivo bone formation by human bone marrow stromal cells: reconstruction of the mouse calvarium and mandible. Stem Cells. 2006;24(9):2140–9.
18. Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc. 2012;7(10):1918–29.
19. de Oliveira RC, de Oliveira FH, Cestari TM, Taga R, Granjeiro JM. Morphometric evaluation of the repair of critical-size defects using demineralized bovine bone and autogenous bone grafts in rat calvaria. Clin Oral Implants Res. 2008;19(8):749–54.
20. Huang RL, Yuan Y, Tu J, Zou GM, Li Q. Exaggerated inflammatory environment decreases BMP-2/ACS-induced ectopic bone mass in a rat model: implications for clinical use of BMP-2. Osteoarthritis Cartilage. 2014;22(8):1186–96.
21. Chen YH, Wang WH, Wang YH, Lin ZY, Wen CC, Chern CY. Evaluation of the Anti-Inflammatory Effect of Chalcone and Chalcone Analogues in a Zebrafish Model. Molecules. 2013;18(2):2052–60.
22. Pingaew R, Saekee A, Mandi P, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur J Med Chem. 2014;85:65–76.
23. Trotta DR, Gorny C Jr, Zielak JC, Gonzaga CC, Giovanini AF, Deliberador TM. Bone repair of critical size defects treated with mussel powder associated or not with bovine bone graft: histologic and histomorphometric study in rat calvaria. J Craniomaxillofac Surg. 2014;42(6):783–43.
24. Won SJ, Liu CT, Tsao LT, Weng JR, Ko HH, Wang JP, Lin CN. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. Eur J Med Chem. 2005;40(1):103–12.
25. Jha A, Mukherjee C, Rolle AJ, De Clercq E, Balzarini J, Stables JP. Cytostatic activity of novel 4'-aminochalcone-based imides. Bioorg Med Chem Lett. 2007;17(16):4545–50.
26. Pankova S, Tsvetkova D. Role of Phytoestrogens in Prevention of Osteoporosis. Int J Curr Pharm Res. 2015;7(2):1–6.
27. Sung B, Prasad S, Yadav VR, Gupta SC, Reuter S, Yamamoto N, Murakami A, Aggarwal BB. RANKL signaling and osteoclastogenesis is negatively regulated by cardamonin. PLoS One. 2013;8(5):e64118.
28. Suh KS, Rhee SY, Kim YS, Lee YS, Choi EM. Xanthohumol modulates the expression of osteoclast-specific genes during osteoclastogenesis in RAW264.7 cells. Food Chem Toxicol. 2013;62:99–106.
Published
2017-08-24
How to Cite
ORTOLAN, Xana Raquel et al. Osteogenic potential of different chalcones in an in vivo model: A preliminary study.. Journal of Oral Research, [S.l.], v. 6, n. 8, p. 209-215, aug. 2017. ISSN 0719-2479. Available at: <https://www.joralres.com/index.php/JOralRes/article/view/joralres.2017.059>. Date accessed: 24 apr. 2024. doi: https://doi.org/10.17126/joralres.2017.059.
Section
Articles

Keywords

chalcone; osteogenesis; organic synthesis.

Most read articles by the same author(s)