Localización de las proteínas específicas del cemento radicular CEMP1 y CAP en células neoplásicas

  • Patricia González-Alva Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México
  • Eduardo Gómez-Plata Departamento de Patología, Centro Oncológico Estatal ISSEMYM.
  • Higinio Arzate Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México

Abstract

Introducción: Las proteínas CEMP1 y CAP presentes en los cementoblastos y sus progenitores contribuyen a los procesos de mineralización en tejidos del ligamento periodontal, incluyendo la migración y la proliferación de fibroblastos gingivales; sin embargo su papel y relación con procesos neoplásicos no se han estudiado a profundidad. Para lograr un mejor entendimiento de la posible contribución de estas proteínas en los procesos tumorales, particularmente en las metástasis óseas, se investigó su expresión y localización en tejidos y líneas celulares de cáncer humano. Materiales y métodos: Trece casos de cáncer de próstata y mama que desarrollaron enfermedad metastásica ósea fueron analizados por medio de inmunohistoquímica; mientras que la expresión de las proteínas en dos líneas celulares de carcinoma de próstata (PC-3) y mama (MCF-7) se estudió por medio de ensayos de Western Blot. Resultados: Los tejidos de cáncer revelaron expresión citoplasmática y ocasionalmente nuclear de CAP en células tumorales y estructuras glandulares pequeñas, así como en el citoplasma de los fibroblastos estromales adyacentes al frente de invasión tumoral. En lo correspondiente a CEMP1, su expresión se localizó en el citoplasma de las células tumorales de 5 casos, pero no en el estroma. Ensayos de Wester Blot mostraron expresión de CEMP1 en las células PC-3 y MCF-7; y de CAP en las MCF-7. Conclusiones: Los resultados muestran que las proteínas de cemento radicular CEMP1 y CAP se expresan en tejidos neoplásicos y células neoplásicas, y que posiblemente contribuyen en ciertas condiciones patológicas como el cáncer metastásico en humanos.Palabras clave: CEMP1, CAP, metástasis óseas, TWIST, Runx2.Introduction: CEMP1 and CAP are recognized as cementum proteins, they appear to be limited to cementoblasts and their progenitors, and participate in the mineralization process of periodontal ligament tissues, including the proliferation and migration of periodontal ligament fibroblasts. However, their contribution in neoplastic processes had not been explored. In the present study, we investigated their protein expression and localization in cancer tissues and cells. Materials and Methods: CEMP1 and CAP expressions were analyzed immunohistochemically in 13 cancer cases with bone metastasis. In addition, Wester Blot essays were use to detect expression of the proteins in the prostate (PC-3) and mama (MCF-7) cancer cell lines. Results: CAP expression was detected in all tissues examined. Strong cytoplasmatic and rarely nuclear staining was found in small tumor nests, glandular structures and, in the stromal fibroblasts at the immediate vicinity of the tumor nests. CEMP1 was found in the cytoplasm of tumor cells in 5 cases, but its expression was negative in the stromal tissues. Also, cancer lines PC-3 and MCF-7 showed CEMP1 expression; however, CAP expression was observed only in MCF-7 cells. Conclusions: The results suggest that CEMP1 and CAP are present in tissues other that cementum and possibly contribute to pathological conditions such as metastatic cancer.Keywords: CEMP1, CAP, bone metastasis, TWIST, Runx2.

Author Biographies

Patricia González-Alva, Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México
ProfesoraLaboratorio de Biología PeriodontalFacultad de OdontologíaUniversidad Nacional Autónoma de México
Eduardo Gómez-Plata, Departamento de Patología, Centro Oncológico Estatal ISSEMYM.
Jefe del Departamento de Patología, Centro Oncológico Estatal ISSEMYM.
Higinio Arzate, Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México
Jefe del Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad Nacional Autónoma de México

References

1. Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 2006;25(4): 589-600.
2. Mundy GR. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nature Rev Cancer. 2002;2(8): 584-93.
3. Suva LJ, Washam C, Nicholas RW, Griffin RJ. Bone metastasis: mechanisms and therapeutic opportunities. Nature Rev Endocrinol. 2011;7(4):208-18.
4. Coleman RE. Prevention and treatment of bone metastases. Nature Rev Clinical Oncol. 2012;9(2):76-8.
5. Yuen HF, Kwok WK, Chan KK, Chua CW, Chan YP, Chu YY. TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction. Carcinogenesis. 2008;29(8):1509-18.
6. Saad F, Clarke N, Colombel M. Natural history and treatment of bone complications in prostate cancer. Eur Urol. 2006;49(3):429-40.
7. Yu L, Li H-z, Lu S-m, Tian J-j, Ma J-k, Wang H-b. Down-regulation of TWIST decreases migration and invasion of laryngeal carcinoma Hep-2 cells by regulating the E-cadherin, N-cadherin expression. J Cancer Res Clinical Oncol. 2011;137(10): 1487-93.
8. Yuen HF, Chua CW, Chan YP, Wong YC, Wang X, Chan KW. Significance of TWIST and E-cadherin expression in the metastatic progression of prostatic cancer. Histopathology. 2007;50(5): 648-58.
9. Komaki M, Iwasaki K, Arzate H, Narayanan AS, Izumi Y, Morita I. Cementum protein 1 (CEMP1) induces a cementoblastic phenotype and reduces osteoblastic differentiation in periodontal ligament cells. J Cellular Physiol. 2012;227(2):649-57.
10. Arzate H, Olson SW, Page RC, Gown AM, Narayanan AS. Production of a monoclonal-antibody to an attachment protein derived from human cementum. Faseb J. 1992;6(11):2990-5.
11. Carmona-Rodriguez B, Alvarez-Perez MA, Narayanan AS, Zeichner-David M, Reyes-Gasga J, Molina-Guarneros J. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts. Biochem Biophys Res Comm. 2007;358(3):763-9.
12. Perez MAA, Pitaru S, Fregoso OA, Gasga JR, Arzate H. Anti-cementoblastoma-derived protein antibody partially inhibits mineralization on a cementoblastic cell line. J Structural Biol. 2003;143(1):1-13.
13. Alvarez Perez MA, Pitaru S, Alvarez Fregoso O, Reyes Gasga J, Arzate H. Anti-cementoblastoma-derived protein antibody partially inhibits mineralization on a cementoblastic cell line. J Structural Biol. 2003;143(1):1-13.
14. De Hoyos AV, Hoz-Rodriguez L, Arzate H, Narayanan AS. Isolation of Protein-Tyrosine Phosphatase-like Member-a Variant from Cementum. J Dent Res. 2012;91(2):203-9.
15. Saito M, Iwase M, Maslan S, Nozaki N, Yamauchi M, Handa K. Expression of cementum-derived attachment protein in bovine tooth germ during cementogenesis. Bone. 2001;29(3):242-8.
16. Komaki M, Karakida T, Abe M, Oida S, Mimori K, Iwasaki K, Noguchi K, Oda S, Ishikawa I. Twist negatively regulates osteoblastic differentiation in human periodontal ligament cells. J Cellular Biochem. 2007;100(2):303-14.
17. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nature Rev Cancer. 2006;6(5): 392-401.
18. Mueller MM, Fusenig NE. Friends or foes - Bipolar effects of the tumour stroma in cancer. Nature Rev Cancer. 2004;4(11): 839-49.
19. Hoz L, Romo E, Zeichner-David M, Sanz M, Nunez J, Gaitan L, Mercado G, Arzate H. Cementum protein 1 (CEMP1) induces differentiation by human periodontal ligament cells under three-dimensional culture conditions. Cell Biol Int. 2012;36(2):129-36.
20. Koeneman KS, Yeung F, Chung LWK. Osteomimetic properties of prostate cancer cells: A hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate. 1999;39(4):246-61.
21. Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, Bellahcene A, Van Wijnen AJ, Young MF, Lian JB, Stein GS, Gerstenfeld LC. Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res. 2003;63(10):2631-7.
22. Barnes GL, Hebert KE, Kamal M, Javed A, Einhorn TA, Lian JB, Stein GS, Gerstenfeld LC. Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res. 2004;64(13):4506-13.
23. Sung CO, Lee K-W, Han S, Kim S-H. Twist1 Is Up-Regulated in Gastric Cancer-Associated Fibroblasts with Poor Clinical Outcomes. Am J Pathol. 2011;179(4):1827-38.
24. Javed A, Barnes GL, Pratap J, Antkowiak T, Gerstenfeld LC, van Wijnen AJ, Stein JL, Lian JB, Stein GS. Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc Natl Acad Sci U S A.. 2005;102(5):1454-9.
25. Inman CK, Shore P. The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biological Chem. 2003;278(49):48684-9.
26. Sathi GSA, Nagatsuka H, Tamamura R, Fujii M, Gunduz M, Inoue M, Rivera RS, Nagai N. Stromal cells promote bone invasion by suppressing bone formation in ameloblastoma. Histopathology. 2008;53(4):458-67.
Published
2013-04-09
How to Cite
GONZÁLEZ-ALVA, Patricia; GÓMEZ-PLATA, Eduardo; ARZATE, Higinio. Localización de las proteínas específicas del cemento radicular CEMP1 y CAP en células neoplásicas. Journal of Oral Research, [S.l.], v. 2, n. 1, p. 11-17, apr. 2013. ISSN 0719-2479. Available at: <http://www.joralres.com/index.php/JOR/article/view/joralres.2013.003>. Date accessed: 28 oct. 2020. doi: https://doi.org/10.17126/joralres.2013.003.
Section
Articles