Bases ambientales y genéticas de las fisuras orofaciales: Revisión.

  • Cesar A Rivera Unidad de Histología y Embriología, Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile.
  • María Jesús Arenas Escuela de Odontología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile.


El desarrollo embriológico de las estructuras orofaciales es un proceso complejo guiado por programas genéticos. Alteraciones en esos procesos dan lugar a anomalías estructurales. Un ejemplo de ellas son las fisuras de labio y paladar. Las principales vías involucradas en las fisuras tienen como participantes a las familias del factor de crecimiento fibroblástico (FGF), Hedgehog (HH), Wingless (WNT) y la familia del factor de crecimiento transformante beta (TGFβ), que incluye las proteínas morfogenéticas del hueso (BMPs) y activinas. En esta revisión narrativa se presentan algunos de los procesos celulares, moleculares y factores ambientales implicados en el desarrollo del complejo orofacial, finalizando con posibilidades terapéuticas para la evidencia acumulada.Palabras clave: desarrollo embrionario, labio fisurado, paladar fisurado, fisura orofacial.Complex genetic process guides the embryonic head development. Alterations in these processes result in structural abnormalities. An example of these are the cleft lip and palate. The major pathways involved in the fissures are families: the Fibroblast Growth Factor (FGF) family, the Hedgehog (HH) family, the Wingless (WNT) family and the Transforming Growth Factor beta (TGF-β) family, which includes the Bone Morphogenetic Proteins (BMPs) and Activins. In this review, we discuss some of the celular/molecular processes and environmental factors involved in the development of the orofacial complex, ending with therapeutic possibilities and potential clinical relevance to the accumulated evidence.Keywords: embryonic development, cleft lip, cleft palate, orofacial cleft.


1. Garland CB, Pomerantz JH. Regenerative strategies for craniofacial disorders. Front Physiol. 2012;3.
2. Avery J. Oral development and histology: Thieme; 2001.
3. Carlson BM. Human Embryology and Developmental Biology: with STUDENT CONSULT Online Access: Mosby; 2008.
4. Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet. 2011;12(3):167-78.
5. Kouskoura T, Fragou N, Alexiou M, John N, Sommer L, Graf D, et al. The genetic basis of craniofacial and dental abnormalities. Schweiz Monatsschr Zahnmed. 2011;121(7-8):636-46.
6. Nanci A. Ten Cate's Oral Histology-E-Book: Development, Structure, and Function: Mosby; 2007.
7. Wilkie AOM, Morriss-Kay GM. Genetics of craniofacial development and malformation. Nature Reviews Genetics. 2001;2(6):458-68.
8. Cordero DR, Brugmann S, Chu Y, Bajpai R, Jame M, Helms JA. Cranial neural crest cells on the move: their roles in craniofacial development. American Journal of Medical Genetics Part A. 2011;155(2):270-9.
9. Kaltschmidt B, Kaltschmidt C, Widera D. Adult craniofacial stem cells: sources and relation to the neural crest. Stem Cell Rev. 2012;8(3):658-71.
10. Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development. 2010;137(16):2605-21.
11. Santagati F, Rijli FM. Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci. 2003;4(10):806-18.
12. Rahimov F, Jugessur A, Murray JC. Genetics of nonsyndromic orofacial clefts. Cleft Palate Craniofac J. 2012;49(1):73-91.
13. Carinci F, Scapoli L, Palmieri A, Zollino I, Pezzetti F. Human genetic factors in nonsyndromic cleft lip and palate: an update. Int J Pediatr Otorhinolaryngol. 2007;71(10):1509-19.
14. Dabed CC, Cauvi DL. Survery of Dentists' Experience with Cleft Palate Children in Chile. The Cleft palate-craniofacial journal. 1998;35(5):430-5.
15. Hodgkinson PD, Brown S, Duncan D, Grant C, McNaughton A, Thomas P, et al. Management of children with cleft lip and palate: a review describing the application of multidisciplinary team working in this condition based upon the experiences of a regional cleft lip and palate centre in the United Kingdom. Fetal and Maternal Medicine Review. 2005;16(01):1-27.
16. Wyszynski DF, Wu T. Use of US birth certificate data to estimate the risk of maternal cigarette smoking for oral clefting. Cleft Palate Craniofac J. 2002;39(2):188-92.
17. Beaty TH, Hetmanski JB, Zeiger JS, Fan YT, Liang KY, VanderKolk CA, et al. Testing candidate genes for non-syndromic oral clefts using a case-parent trio design. Genet Epidemiol. 2002;22(1):1-11.
18. Munger RG, Romitti PA, Daack-Hirsch S, Burns TL, Murray JC, Hanson J. Maternal alcohol use and risk of orofacial cleft birth defects. Teratology. 1996;54(1):27-33.
19. Shaw GM, Nelson V, Carmichael SL, Lammer EJ, Finnell RH, Rosenquist TH. Maternal periconceptional vitamins: interactions with selected factors and congenital anomalies? Epidemiology. 2002;13(6):625-30.
20. Wehby GL, Goco N, Moretti-Ferreira D, Felix T, Richieri-Costa A, Padovani C, et al. Oral cleft prevention program (OCPP). BMC Pediatr. 2012;12:184.
21. Tolarova M, Harris J. Reduced recurrence of orofacial clefts after periconceptional supplementation with high-dose folic acid and multivitamins. Teratology. 1995;51(2):71-8.
22. Castillo C, Tur J, Uauy R. Fortificación de la harina de trigo con ácido fólico en Chile: Consecuencias no intencionadas. Rev Med Chil. 2010;138(7):832-40.
23. Cortes F, Mellado C, Pardo RA, Villarroel LA, Hertrampf E. Wheat flour fortification with folic acid: changes in neural tube defects rates in Chile. Am J Med Genet A. 2012;158A(8):1885-90.
24. Lopez-Camelo JS, Orioli IM, da Graca Dutra M, Nazer-Herrera J, Rivera N, Ojeda ME, et al. Reduction of birth prevalence rates of neural tube defects after folic acid fortification in Chile. Am J Med Genet A. 2005;135(2):120-5.
25. Nazer H, Cifuentes O, Aguila R, Juárez HM, Cid RM, Godoy VM, et al. [Effects of folic acid fortification in the rates of malformations at birth in Chile]. Rev Med Chil. 2007;135(2):198.
26. Nazer J, Ramirez MC, Cifuentes L. [Evolution of prevalence rates of orofacial clefts in a maternity of a Chilean clinical hospital]. Rev Med Chil. 2010;138(5):567-72.
27. Lopez-Camelo JS, Castilla EE, Orioli IM. Folic acid flour fortification: impact on the frequencies of 52 congenital anomaly types in three South American countries. Am J Med Genet A. 2010;152A(10):2444-58.
28. Baxter H, Fraser FC. The production of congenital defects in the offspring of female mice treated with cortisone. A preliminary report. McGill Med J. 1950;19(4):245-9.
29. Carmichael SL, Shaw GM. Maternal corticosteroid use and risk of selected congenital anomalies. Am J Med Genet. 1999;86(3):242-4.
30. Park-Wyllie L, Mazzotta P, Pastuszak A, Moretti ME, Beique L, Hunnisett L, et al. Birth defects after maternal exposure to corticosteroids: prospective cohort study and meta-analysis of epidemiological studies. Teratology. 2000;62(6):385-92.
31. Gorlin RJ, Cohen MM, Hennekam RC. Syndromes of the Head and Neck: Oxford University Press, USA; 2001.
32. Montenegro MA, Palomino H, Palomino HM. The influence of earthquake-induced stress on human facial clefting and its simulation in mice. Arch Oral Biol. 1995;40(1):33-7.
33. Machida J, Yoshiura K, Funkhauser CD, Natsume N, Kawai T, Murray JC. Transforming growth factor-alpha (TGFA): genomic structure, boundary sequences, and mutation analysis in nonsyndromic cleft lip/palate and cleft palate only. Genomics. 1999;61(3):237-42.
34. Hwang SJ, Beaty TH, Panny SR, Street NA, Joseph JM, Gordon S, et al. Association study of transforming growth factor alpha (TGF alpha) TaqI polymorphism and oral clefts: indication of gene-environment interaction in a population-based sample of infants with birth defects. Am J Epidemiol. 1995;141(7):629-36.
35. Shaw GM, Wasserman CR, Lammer EJ, O'Malley CD, Murray JC, Basart AM, et al. Orofacial clefts, parental cigarette smoking, and transforming growth factor-alpha gene variants. Am J Hum Genet. 1996;58(3):551-61.
36. Riley BM, Mansilla MA, Ma J, Daack-Hirsch S, Maher BS, Raffensperger LM, et al. Impaired FGF signaling contributes to cleft lip and palate. Proceedings of the National Academy of Sciences. 2007;104(11):4512-7.
37. Lidral AC, Romitti PA, Basart AM, Doetschman T, Leysens NJ, Daack-Hirsch S, et al. Association of MSX1 and TGFB3 with nonsyndromic clefting in humans. The American Journal of Human Genetics. 1998;63(2):557-68.
38. Suazo J, Santos JL, Scapoli L, Jara L, Blanco R. Association Between TGFB3 and Nonsyndromic Cleft Lip With or Without Cleft Palate in a Chilean Population. Cleft Palate Craniofac J. 2010;47(5):513-7.
39. Kim MH, Kim HJ, Choi JY, Nahm DS. Transforming growth factor-beta3 gene SfaN1 polymorphism in Korean nonsyndromic cleft lip and palate patients. J Biochem Mol Biol. 2003;36(6):533-7.
40. Wurdak H, Ittner LM, Lang KS, Leveen P, Suter U, Fischer JA, et al. Inactivation of TGFbeta signaling in neural crest stem cells leads to multiple defects reminiscent of DiGeorge syndrome. Genes Dev. 2005;19(5):530-5.
41. Zouvelou V, Luder HU, Mitsiadis TA, Graf D. Deletion of BMP7 affects the development of bones, teeth, and other ectodermal appendages of the orofacial complex. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2009;312(4):361-74.
42. Suazo J, Santos JL, Jara L, Blanco R. Association between bone morphogenetic protein 4 gene polymorphisms with nonsyndromic cleft lip with or without cleft palate in a chilean population. DNA Cell Biol. 2010;29(2):59-64.
43. Suzuki S, Marazita ML, Cooper ME, Miwa N, Hing A, Jugessur A, et al. Mutations in BMP4 are associated with subepithelial, microform, and overt cleft lip. Am J Hum Genet. 2009;84(3):406-11.
44. Chen Q, Wang H, Hetmanski JB, Zhang T, Ruczinski I, Schwender H, et al. BMP4 was associated with NSCL/P in an Asian population. PLoS One. 2012;7(4):e35347.
45. Suazo J, Santos JL, Jara L, Blanco R. Parent-of-origin effects for MSX1 in a Chilean population with nonsyndromic cleft lip/palate. Am J Med Genet A. 2010;152A(8):2011-6.
46. van den Boogaard M, Dorland M, Beemer F, van Amstel H. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nature genetics. 2000;24(4):342.
47. Jezewski P, Vieira A, Nishimura C, Ludwig B, Johnson M, O’brien S, et al. Complete sequencing shows a role for MSX1 in non-syndromic cleft lip and palate. Journal of medical genetics. 2003;40(6):399-407.
48. Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nature genetics. 1994;6(4):348-56.
49. Blanco R, Chakraborty R, Barton SA, Carreno H, Paredes M, Jara L, et al. Evidence of a sex-dependent association between the MSX1 locus and nonsyndromic cleft lip with or without cleft palate in the Chilean population. Hum Biol. 2001;73(1):81-9.
50. Kantaputra PN, Paramee M, Kaewkhampa A, Hoshino A, Lees M, McEntagart M, et al. Cleft lip with cleft palate, ankyloglossia, and hypodontia are associated with TBX22 mutations. J Dent Res. 2011;90(4):450-5.
51. Zucchero TM, Cooper ME, Maher BS, Daack-Hirsch S, Nepomuceno B, Ribeiro L, et al. Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate. New England Journal of Medicine. 2004;351(8):769-80.
52. van der Put NM, Steegers-Theunissen RP, Frosst P, Trijbels FJ, Eskes TK, van den Heuvel LP, et al. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet. 1995;346(8982):1070-1.
53. Yan L, Zhao L, Long Y, Zou P, Ji G, Gu A, et al. Association of the maternal MTHFR C677T polymorphism with susceptibility to neural tube defects in offsprings: evidence from 25 case-control studies. PLoS One. 2012;7(10):e41689.
54. Prescott NJ, Winter RM, Malcolm S. Maternal MTHFR genotype contributes to the risk of non-syndromic cleft lip and palate. J Med Genet. 2002;39(5):368-9.
55. van Rooij IA, Vermeij-Keers C, Kluijtmans LA, Ocke MC, Zielhuis GA, Goorhuis-Brouwer SM, et al. Does the interaction between maternal folate intake and the methylenetetrahydrofolate reductase polymorphisms affect the risk of cleft lip with or without cleft palate? Am J Epidemiol. 2003;157(7):583-91.
56. Ghi T, Perolo A, Banzi C, Contratti G, Valeri B, Savelli L, et al. Two‐dimensional ultrasound is accurate in the diagnosis of fetal craniofacial malformation. Ultrasound in obstetrics & gynecology. 2002;19(6):543-51.
57. Nollet P, Kuijpers-Jagtman AM, Chatzigianni A, Semb G, Shaw WC, Bronkhorst EM, et al. Nasolabial appearance in unilateral cleft lip, alveolus and palate: a comparison with Eurocleft. J Craniomaxillofac Surg. 2007;35(6-7):278.
58. Nollet P, Katsaros C, Huyskens R, Borstlap W, Bronkhorst E, Kuijpers-Jagtman A. Cephalometric evaluation of long-term craniofacial development in unilateral cleft lip and palate patients treated with delayed hard palate closure. International journal of oral and maxillofacial surgery. 2008;37(2):123-30.
59. Muhamad AH, Azzaldeen A. Genetic of Non-syndromic Cleft Lip and Palate. Open Access Scientific Reports. 2012:1:510.
60. Jones NC, Trainor PA. The therapeutic potential of stem cells in the treatment of craniofacial abnormalities. Expert opinion on biological therapy. 2004;4(5):645-57.
61. Gómez de Ferraris ME, Campos Muñoz A. Histología y embriología bucodental:[bases extructurales de la patología, el diagnóstico, la terapéutica y la prevención odontológica]1999.
62. Rice R, Spencer-Dene B, Connor EC, Gritli-Linde A, McMahon AP, Dickson C, et al. Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes cleft palate. J Clin Invest. 2004;113(12):1692-700.
63. Hu D, Helms JA. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development. 1999;126(21):4873-84.
64. Cobourne MT, Xavier GM, Depew M, Hagan L, Sealby J, Webster Z, et al. Sonic hedgehog signalling inhibits palatogenesis and arrests tooth development in a mouse model of the nevoid basal cell carcinoma syndrome. Dev Biol. 2009;331(1):38-49.
65. Hahn H, Christiansen J, Wicking C, Zaphiropoulos PG, Chidambaram A, Gerrard B, et al. A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental abnormalities. J Biol Chem. 1996;271(21):12125-8.
66. Juriloff DM, Harris MJ, McMahon AP, Carroll TJ, Lidral AC. Wnt9b is the mutated gene involved in multifactorial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test. Birth Defects Res A Clin Mol Teratol. 2006;76(8):574-9.
67. Niemann S, Zhao C, Pascu F, Stahl U, Aulepp U, Niswander L, et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet. 2004;74(3):558-63.
68. Wurdak H, Ittner LM, Lang KS, Leveen P, Suter U, Fischer JA, et al. Inactivation of TGFβ signaling in neural crest stem cells leads to multiple defects reminiscent of DiGeorge syndrome. Genes & development. 2005;19(5):530-5.
69. Kaartinen V, Cui XM, Heisterkamp N, Groffen J, Shuler CF. Transforming growth factor-beta3 regulates transdifferentiation of medial edge epithelium during palatal fusion and associated degradation of the basement membrane. Dev Dyn. 1997;209(3):255-60.
70. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275-81.
71. Ashique AM, Fu K, Richman JM. Endogenous bone morphogenetic proteins regulate outgrowth and epithelial survival during avian lip fusion. Development. 2002;129(19):4647-60.
72. Stoffer J. Development of the Face and Palate Baltimore: Indiana University Bloomington; [19-3-2012]. Available from:
How to Cite
RIVERA, Cesar A; ARENAS, María Jesús. Bases ambientales y genéticas de las fisuras orofaciales: Revisión.. Journal of Oral Research, [S.l.], v. 2, n. 1, p. 35-41, mar. 2013. ISSN 0719-2479. Available at: <>. Date accessed: 18 feb. 2020. doi: